Teorema binomial: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
k Robot: Perubahan kosmetika
Baris 1:
[[ImageBerkas:Pascal's triangle 5.svg|right|thumb|200px|[[Koefisien binomial]] dapat dilihat pada [[segitiga Pascal]] dimana setiap entri adalah hasil penjumlahan dua angka di atasnya.]]
 
Dalam [[aljabar elementer]], '''teorema binomial''' adalah [[teorema]] yang menjelaskan mengenai pengembangan [[eksponen]] dari penjumlahan antara dua variabel (binomial). Berdasarkan teorema ini, dimungkinkan untuk mengembangkan eksponen (''x''&nbsp;+&nbsp;''y'')<sup>''n''</sup> menjadi sebuah [[penjumlahan]] dari suku-suku dengan bentuk ''ax''<sup>''b''</sup>''y''<sup>''c''</sup>, dimana eksponen ''b'' dan ''c'' adalah [[bilangan asli|bilangan bulat non negatif]] dengan {{nowrap|''b'' + ''c'' {{=}} ''n''}}, dan [[koefisien]] ''a'' dari setiap suku adalah bilangan bulat positif tertentu tergantung pada ''n'' dan ''b''. Ketika suatu eksponen adalah nol, faktor yang bereksponen nol tersebut biasanya dihilangkan dari sukunya. Contohnya,
Baris 8:
Koefisien ''a'' pada suku ''ax''<sup>''b''</sup>''y''<sup>''c''</sup> dikenal sebagai [[koefisien binomial]] <math>\tbinom nb</math> atau <math>\tbinom nc</math> (keduanya memiliki nilai yang sama). Koefisien untuk setiap variasi ''n'' dan ''b'' dapat disusun membentuk [[segitiga Pascal]]. Angka-angka ini juga muncul dalam [[kombinatorika]], dimana <math>\tbinom nb</math> menunjukkan banyaknya [[kombinasi]] yang berbeda dari [[unsur (matematika)|unsur]] ''b'' yang dapat dipilih dari suatu [[himpunan (matematika)|himpunan]] dengan unsur sebanyak ''n''.
 
== Sejarah ==
Peristiwa-peristiwa khusus terkait teorema binomial yang diketahui sejak zaman kuno diikhtisarkan berikut ini:
 
Abad ke-4 SM [[[[Matematika Yunani|matematikawan Yunani]]]] [[Euklides]] menyebutkan kasus khusus teorema binomial untuk eksponen&nbsp;2.<ref name=wolfram>{{cite web|url=http://mathworld.wolfram.com/BinomialTheorem.html|title=Binomial Theorem|website=Wolfram MathWorld|last=Weisstein|first=Eric W.}}</ref><ref name="Coolidge">{{cite journal|url=http://www.jstor.org/pss/2305028|title=The Story of the Binomial Theorem|first=J. L.|last=Coolidge|journal=The American Mathematical Monthly|volume=56|issue=3|date=1949|pp=147–157|doi=10.2307/2305028}}</ref> Ada bukti bahwa teorema binomial untuk kubus telah diketahui pada abad ke-6 di India.<ref name=wolfram /><ref name="Coolidge" />
 
Koefisien binomial, seperti jumlah kombinasi yang menunjukkan banyak cara untuk memilih ''k'' objek dari ''n'' tanpa penggantian, telah menjadi perhatian orang-orang Hindu kuno. Referensi paling awal yang diketahui mengenai permasalahan kombinasi ini adalah ''Chandaḥśāstra'' karya penulis Hindu, [[Pingala]] (sekitar 200 SM), yang memuat suatu metode untuk solusinya.<ref name=Chinese>{{cite book|title=A history of Chinese mathematics |author1=Jean-Claude Martzloff|author2=S.S. Wilson|author3=J. Gernet|author4=J. Dhombres|publisher=Springer|year=1987}}</ref>{{rp|230}} Seorang peneliti bernama [[Halayudha]] dari abad ke-10 M menjelaskan mengenai metode ini menggunakan yang kini dikenal sebagai [[segitiga Pascal]].<ref name=Chinese /> Pada abad ke-6 M, matematikawan Hindu mungkin telah mengetahui cara menunjukkannya dalam sebuah persamaan <math>\frac{n!}{(n-k)!k!}</math>,<ref name="Biggs">{{cite journal|last=Biggs|first=N. L.|title=The roots of combinatorics|journal=Historia Math. |volume=6 |date=1979 |issue=2|pp=109–136|doi=10.1016/0315-0860(79)90074-0}}</ref> dan suatu pernyataan yang jelas mengenai aturan ini dapat ditemukan dalam naskah abad ke-12 ''Lilavati'' karya [[Bhāskara II|Bhaskara]].<ref name="Biggs" />
 
Teorema binomial yang sama dapat ditemukan pada hasil tulisan [[Matematika Islam abad pertengahan|matematikawan Persia]] abad ke-11, [[Al-Karaji]], yang menggambarkan pola segitiga dari koefisien binomial.<ref name=Karaji>{{MacTutor|id=Al-Karaji|title=Abu Bekr ibn Muhammad ibn al-Husayn Al-Karaji}}</ref> Ia juga memberikan [[pembuktian matematika]] dari teorema binomial dan segitiga dengan menggunakan suatu bentuk sederhana dari [[induksi matematika]].<ref name=Karaji /> Penyari dan matematikawan Persia [[Umar Khayyām]] mungkin telah akrab dengan rumus-rumus dengan pangkat yang lebih tinggi, meskipun banyak karya-karya matematikanya hilang.<ref name="Coolidge" /> Ekspansi binomial dengan derajat kecil telah diketahui oleh matematikawan abad ke-13 bernama [[Yang Hui]]<ref>{{cite web
Baris 26:
}}</ref> dan [[Zhu Shijie]].<ref name="Coolidge" /> Yang Hui menghubungkan metode itu dengan naskah yang jauh lebih awal berasal dari abad ke-11 tulisan [[Jia Xian]], meskipun tulisan-tulisannya kini juga hilang.<ref name=Chinese />{{rp|142}}
 
== Pernyataan teorema ==
Berdasarkan teorema binomial, dimungkinkan untuk mengembangkan setiap eksponen dari ''x''&nbsp;+&nbsp;''y'' menjadi suatu penjumlahan dengan bentuk
:<math>(x+y)^n = {n \choose 0}x^n y^0 + {n \choose 1}x^{n-1}y^1 + {n \choose 2}x^{n-2}y^2 + \cdots + {n \choose n-1}x^1 y^{n-1} + {n \choose n}x^0 y^n,
Baris 42:
:<math>(1+x)^n = \sum_{k=0}^n {n \choose k}x^k.</math>
 
== Contoh ==
[[ImageBerkas:Pascal triangle small.png|thumb|right|300px|Segitiga Pascal]]
Contoh paling dasar teorema binomial adalah rumus untuk ''x''&nbsp;+&nbsp;''y'' [[kuadrat (aljabar)|kuadrat]]
 
Baris 77:
 
=== Penjelasan geometris ===
[[FileBerkas:binomial expansion visualisation.svg|thumb|300px|Visualisasi ekspansi binomial hingga pangkat 4]]
Untuk setiap ''a'' dan ''b'' bernilai positif, teorema binomial dengan ''n''&nbsp;=&nbsp;2 adalah fakta bukti geometris bahwa sebuah bujur sangkat dengan sisi {{nowrap|''a'' + ''b''}} dapat dipotong menjadi sebuah bujur sangkar dengan sisi ''a'', sebuah bujur sangkar dengan sisi ''b'', dan dua persegi panjang dengan sisi ''a'' dan ''b''. Dengan ''n''&nbsp;=&nbsp;3, teorema binomial menyatakan bahwa sebuah kubus dengan sisi {{nowrap|''a'' + ''b''}} dapat dipotong-potong menjadi sebuah kubus dengan sisi ''a'', sebuah kubus dengan sisi ''b'', tiga buah kotak persegi panjang berdimensi ''a''×''a''×''b'', dan tiga buah kotak persegi panjang berdimensi ''a''×''b''×''b''.
 
Baris 83:
:<math>(x+\Delta x)^n = x^n + nx^{n-1}\Delta x + \tbinom{n}{2}x^{n-2}(\Delta x)^2 + \cdots.</math>
Dengan menggantinya menjadi suatu turunan melalui suatu kuosien diferensiasi dan memasukkan limit berarti bahwa suku berpangkat lebih tinggi – <math>(\Delta x)^2</math> dan lebih tinggi – sehingga diabaikan, dan menghasilkan rumus <math>(x^n)'=nx^{n-1},</math> yang diinterpretasikan sebagai
:"tingkat perubahan sangat kecil dalam volume suatu kubus dengan panjang sisi ''n'' bervariasi pada rentang ''n'' dari permukaannya yang berdimensi <math>(n-1)</math>".
 
{{clear}}
 
== Catatan ==
{{reflist}}
 
== Referensi ==
{{refbegin}}
* {{cite journal|last=Bag|first=Amulya Kumar|year=1966|title=Binomial theorem in ancient India|journal=Indian J. History Sci|volume=1|issue=1|pages=68–74}}
* {{cite journal
|last1 = Barth
|first1 = N. R.
Baris 104:
|doi = 10.2307/4145193
}}
* {{cite book|last1=Graham|first1=Ronald|first2=Donald |last2=Knuth|first3= Oren|last3= Patashnik|title=Concrete Mathematics|publisher=Addison Wesley|year=1994|edition=2nd|pages=153–256|chapter=(5) Binomial Coefficients|isbn=0-201-55802-5|oclc=17649857}}
{{refend}}