Metode Galerkin: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan |
Tidak ada ringkasan suntingan |
||
Baris 33:
Hal ini merupakan sifat mendasar yang membuat analisis matematika dari metode Galerkin sangat jelas. Karena <math>v_n \subset V</math> , kita dapat menggunakan <math> v_n </math> sebagai vector dalam persamaan awal. Substitusi persamaan yang kedua, kita dapati ortogonalitas Galerkin untuk galat
<center><math> a(e_n , v_n) = a(u ,v_n) - a(u_n , v_n) = f(v_n) - f(v_n) = 0 </math>.</center>
Sekarang,
'''d. Bentuk Matriks'''
Baris 72:
'''h. Pendekatan Quasi-Best (Lemma Cèa)'''
Galat
Ini artinya, bahwa sesuai dengan konstanta <math>\frac{C}{c}</math>, solusi Galerkin <math> u_n </math> adalah mendekati solusi awal ''u'' sebagai vector lainnya dalam <math> V_n </math> . Faktanya, hal ini cukup untuk mempelajari pendekatan dengan ruang <math> V_n </math>, dengan sepenuhnya melupakan tentang persamaan yang ssedang diselesaikan.
|