Metode Galerkin: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Boulevard (bicara | kontrib)
Tidak ada ringkasan suntingan
Boulevard (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 42:
<center><math> a(u_n , e_i) = f(e_i) </math>.</center>
Kita akan mengembangkan <math> u_n </math> menjadi basis seperti ini, <math> u_n = \sum_{j=1}^n u_j e_j</math> dan memasukkannya kedalam persamaan di atas, sehingga diperoleh
<center><math> a(\sum_{j=1}^n u_j e_j , e_i) = \sum_{j=1}^n u_j a(e_j,e_i) = f(e_i) </math> untuk <math>i = 1 , \cdots, n</math>.</center>
Dalam persamaan sebelumnya, sebenarnya merupakan sistem persamaan linear <math> A_u = f </math>, dimana
<math> a_ij = a(e_j , e_i) </math> dengan <math> f_i = f(e_i) </math>
Baris 74:
Galat <math>e_n</math> = ''u'' – <math>u_n</math> antara solusi awal dan solusi Galerkin mengenal estimasi sbb:
 
<center><math>\lVert e_n \rVert</math> <math>\le</math> <math>\frac{C}{c}</math> <math>\overset {inf} {v_n \in V_n}</math> <math>\lVert u - v_n \rVert </math>.</center>
 
Ini artinya, bahwa sesuai dengan konstanta <math>\frac{C}{c}</math>, solusi Galerkin <math> u_n </math> adalah mendekati solusi awal ''u'' sebagai vector lainnya dalam <math> V_n </math> . Faktanya, hal ini cukup untuk mempelajari pendekatan dengan ruang <math> V_n </math>, dengan sepenuhnya melupakan tentang persamaan yang ssedang diselesaikan.
Baris 81:
 
Karena buktinya sangat sederhana dan prinsip dasar dibalik semua metode Galerkin yaitu eliptisitas dan pembatasan pada bentuk [[bilinear]](pertidaksamaan) dan ortogonalitas Galerkin, kita punya <math> v_n \in V_n</math> sehingga:
 
<center><math> c\lVert u\rVert ^2 \le a(e_n , e_n) = a(e_n , u-v_n) \le C\lVert e_n \rVert \lVert u-v_n \rVert </math>.</center>
 
Bagi dengan <math> c\lVert e_n \rVert</math> dan ambil semua kemungkinan hasil akhir infimum lemma <math>v_h</math>.