Struktur abstrak: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k yg > yang |
k Robot: Cosmetic changes |
||
Baris 5:
Salah satu cara memperkenalkan konsep himpunan semua bilangan asli sebagai sebuah struktur abstrak adalah melalui [[aksioma Peano]] (sebagai ilustrasi, lihat [http://planetmath.org/encyclopedia/PeanoArithmetic.html]).
== Konsep abstrak 'bidang datar' ==
Sekitar tahun 325–265 sebelum [[Masehi]], [[Euklid]] dari [[Elexandria]] dalam ''Elements'' sudah mendefinisikan konsep abstrak 'bidang datar' melalui lima aksioma (ditulis sedekat mungkin dengan konsep aslinya) sebagai berikut:
# Dua titik sembarang selalu berada dalam sebuah garis lurus.
Baris 13:
# (Postulat kesejajaran). Jika dua ruas garis memotong garis ketiga sedemikian rupa sehingga jumlah kedua sudut dalam dari satu pihak yang terbentuk kurang dari jumlah dua sudut tegak (maksudnya kurang dari 90 + 90 = 180 derajat. Penyunting), maka kedua ruas garis tersebut pasti akan berpotongan, asalkan kedua ruas garis tersebut cukup panjang.
== Ruang vektor ==
[[Ruang vektor]] juga merupakan sebuah konsep abstrak. Kebanyakan mahasiswa dan siswa hanya mengenal konsep vektor dalam ruang real Euklid berdimensi 3, yaitu kumpulan semua bentuk (''x,y,z'') dg ''x, y'' dan ''z'' adalah bilangan-bilangan real. Padahal bilangan real sendiri bisa juga disebut sebagai sebuah vektor.
Baris 21:
''R(m,m''), salah satu kode dalam ''coding theory'' yg sudah lama dipelajari dan diselidiki. Kode ''R(m,m)'' berisi semua vektor-vektor biner (''binary vectors'') yg terdiri atas ''n'' = 2^''m'' [[bit]] (singkatan dari ''binary digits'').
== Kode Reed-Muller ==
Antara tahun 1969 dan 1977, bentuk kode Reed-Muller yang lain, terutama kode
''R''(1,3), digunakan oleh pesawat ruang angkasa Mariner untuk mengirim data ke bumi (http://www.ams.org/featurecolumn/ archive/errors6.html). Konsep kode Reed-Muller sangat erat berkaitan dengan konsep [[Geometri Euklid]] berdimensi ''m'' yang ekuivalen dengan konsep [[Geometri Projektif]] berdimensi ''m''.
== Sifat umum atau universal ==
Struktur abstrak dikatakan bersifat [[umum]] atau [[universal]] sebab struktur abstrak bebas (tak tergantung) dari berbagai fenomena yang secara fisik bisa berbeda-beda, walaupun dari sekian banyak fenomena fisik ini, hanya satu-dua fenomena fisik yang mengilhami struktur abstrak tersebut.
Sebaliknya, struktur abstrak yang sangat umum seringkali tak menjangkau sifat-sifat tambahan dan khusus dari suatu fenomena fisik atau dari struktur abstrak dengan persayaratan yang lebih banyak. Misalnya konsep umum ruang vektor tidak menjangkau sifat-sifat [[jarak]] antara dua vektor dan [[besar]] sebuah vektor dalam sebuah [[ruang hasil kali dalam]] (Inggris: ''inner product space'').
|