Metode Galerkin: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Boulevard (bicara | kontrib)
Tidak ada ringkasan suntingan
Borgxbot (bicara | kontrib)
k Robot: Cosmetic changes
Baris 18:
'''a. Masalah dalam formulasi lemah'''
 
Misalkan kita memasukkan metode Galerkin pada sebuah masalah abstrak yang merupakan suatu [[formulasi lemah]] pada ruang [[Hilbert]] yaitu ''V'', jika diketahui <math> u\in V </math> sehingga untuk setiap <math> v\in V </math> maka
<center><math> a(u,v) = f(v) </math>.</center>
adalah benar. Sekarang <math>a( \cdots, \cdots )</math> adalah bentuk [[bilinear]] (penjelasan yang eksak atas <math>a( \cdots, \cdots )</math> akan ditentukan selanjutnya) dan ''f'' adalah operator linear pembatas pada ''V''.
Baris 24:
'''b. Diskretisasi Galerkin'''
 
Pilih subruang <math> v_n \subset V</math> dengan dimensi yang lebih kecil (sebenarnya, kita akan mengasumsikan bahwa indeks ''n'' menujukkan dimensinya) dan memecahkan masalah yang perhitungkan.
Jika diketahui <math> u_n \in V_n </math> dan untuk setiap <math> v_n \in V_n </math> maka
<center><math> a(u_n ,v_n) = f(v_n) </math>.</center>
Baris 43:
Kita akan mengembangkan <math> u_n </math> menjadi basis seperti ini, <math> u_n = \sum_{j=1}^n u_j e_j</math> dan memasukkannya kedalam persamaan di atas, sehingga diperoleh
<center><math> a(\sum_{j=1}^n u_j e_j , e_i) = \sum_{j=1}^n u_j a(e_j,e_i) = f(e_i) </math> untuk <math>i = 1 , \cdots, n</math>.</center>
Dalam persamaan sebelumnya, sebenarnya merupakan sistem persamaan linear <math> A_u = f </math>, dimana
<math> a_ij = a(e_j , e_i) </math> dengan <math> f_i = f(e_i) </math>
 
Baris 49:
'''e. Matriks Simetrik'''
 
Dalam kaitannya dengan definisi dari matriks entry, matriks dari persamaan Galerkin adalah simetrik jika dan hanya jika bentuk [[bilinear]] <math>a( \cdots, \cdots )</math> adalah simetrik.
 
'''f. Analisis dari Metode Galerkin'''
 
Sekarang, kita akan membatasi diri kita pada bentuk bilinear simetrik, yaitu:
<center><math> a(u,v) = a(u,v) </math>.</center>
Karena ini bukan benar-benar sebuah batas dari metode Galerkin, aplikasi dari teori standar ini menjadi sangat mudah. Selanjutnya, metode [[Petrov-Galerkin]] dibutuhkan dalam kasus non-simetrik.
Baris 60:
Analisi ini kebanyakan akan mengacu pada dua sifat dari bentuk bilinear, yakni:
*Pembatasan: untuk setiap <math> u , v \in V</math> adalah benar bahwa
<center><math> a(u,v) \le C \lVert u \rVert \lVert v \rVert </math> untuk konstanta C > 0.</center>
*Eliptisitas: untuk setiap setiap <math> u \in V</math> adalah benar bahwa
<center><math> a(u,v) \ge c\lVert u\rVert ^2 </math> untuk konstanta c > 0 .</center>
Baris 68:
'''g. Well-posedness dari metode Galerkin'''
 
Karena <math> V_n \subset V </math> pembatasan dan eliptisitas dari bentuk bilinear berlaku bagi <math> V_n </math>. Oleh karena itu, Well-posedness dari metode Galerkin sebenarnya diturunkan dari Well-posedness dari masalah awal.
 
'''h. Pendekatan Quasi-Best (Lemma Cèa)'''
Baris 76:
<center><math>\lVert e_n \rVert</math> <math>\le</math> <math>\frac{C}{c}</math> <math>\overset {inf} {v_n \in V_n}</math> <math>\lVert u - v_n \rVert </math>.</center>
 
Ini artinya, bahwa sesuai dengan konstanta <math>\frac{C}{c}</math>, solusi Galerkin <math> u_n </math> adalah mendekati solusi awal ''u'' sebagai vector lainnya dalam <math> V_n </math> . Faktanya, hal ini cukup untuk mempelajari pendekatan dengan ruang <math> V_n </math>, dengan sepenuhnya melupakan tentang persamaan yang ssedang diselesaikan.
 
'''i. Bukti'''