Paradoks gagak: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
+
Baris 9:
 
Masalah ini diajukan oleh ahli logika [[Carl Gustav Hempel]] pada tahun 1940-an untuk menggambarkan kontradiksi antara [[logika induktif]] dan [[intuisi]].<ref>{{cite book|url=https://plato.stanford.edu/archives/win2016/entries/hempel/|title=The Stanford Encyclopedia of Philosophy|first=James|last=Fetzer|editor-first=Edward N.|editor-last=Zalta|date=2016|publisher=Metaphysics Research Lab, Stanford University|via=Stanford Encyclopedia of Philosophy}}</ref>
 
== Paradoks ==
 
Hempel menggambarkan paradoks dalam ''term'' [[hipotesis]]:<ref name="JSTOR">{{cite journal |last=Hempel |first=C. G. |year=1945 |title=Studies in the Logic of Confirmation I |journal=[[Mind (journal)|Mind]] |volume=54 |issue=13 |pages=1–26 |url=http://www.philoscience.unibe.ch/documents/TexteHS10/Hempel1945.pdf |jstor=2250886 |doi=10.1093/mind/LIV.213.1 }}</ref><ref>{{cite journal |last=Hempel |first=C. G. |year=1945 |title=Studies in the Logic of Confirmation II |journal=[[Mind (journal)|Mind]] |volume=54 |issue=214 |pages=97–121 |url=http://www.collier.sts.vt.edu/5305/hempel-II.pdf | jstor=2250948 |doi=10.1093/mind/LIV.214.97 }}</ref>
: (1) ''Semua [[gagak]] adalah hitam''.
 
Melalui [[kontraposisi]], pernyataa ini [[ekuivalen]] dengan:
: (2) ''Jika ada sesuatu yang tidak hitam, maka itu bukan burung gagak..''
 
Dalam semua situasi di mana (2) benar, (1) juga benar—dan juga, dalam semua situasi di mana (2) salah (yaitu, jika dibayangkan sebuah dunia dimana tidak ada segala sesuatu yang berwarna hitam, namun ada gagak), (1) juga salah.
 
Dengan pernyataan umum seperti ''semua gagak berwarna hitam'', sebuah bentuk pernyataan serupa yang mengacu pada contoh spesifik dari kelas umum biasanya dianggap merupakan bukti untuk pernyataan umum tersebut. Sebagai contoh,
: (3) ''Burung gagak peliharaan saya tak lagi hitam ''
adalah bukti pendukung hipotesis bahwa ''semua gagak berwarna hitam''.
 
Paradoks muncul saat proses yang sama diterapkan pada pernyataan (2). Saat melihat apel hijau, seseorang dapat mengamati:
: (4) ''Apel hijau ini tidak hitam, dan bukan gagak.''
Dengan alasan yang sama, pernyataan ini adalah bukti bahwa (2) ''jika ada sesuatu yang tidak hitam maka itu bukan seekor gagak.'' Tapi karena (seperti di atas) pernyataan ini secara logis setara dengan (1) '' semua burung gagak berwarna hitam '', maka setelah melihat apel hijau adalah bukti yang mendukung gagasan bahwa semua burung gagak berwarna hitam. Kesimpulan ini nampaknya paradoks, karena ini menyiratkan bahwa informasi telah didapat tentang gagak dengan melihat apel.
 
 
== Lihat pula ==