Matahari: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler mengosongkan halaman [ * ]
Tidak ada ringkasan suntingan
Tag: menghilangkan bagian [ * ] Suntingan perangkat seluler Suntingan peramban seluler
Baris 7:
 
Subhanallah. Mahasuci Allah. Betapa mulianya Abu Bakar As-Shiddiq itu sampai-sampai namanya dicatat di matahari.wallahu'alam bissawaab.
 
== Karakteristik ==
[[Berkas:Incandescent Sun.ogv|jmpl|kiri|300px|Video ini memanfaatkan citra [[Solar Dynamics Observatory]] dan menerapkan pemrosesan tambahan untuk memperjelas struktur yang tampak. Peristiwa di video ini mewakili aktivitas 24 jam pada 25 September 2011.]]
 
Matahari adalah [[bintang deret utama tipe G]] yang kira-kira terdiri dari 99,85% massa total Tata Surya. Bentuknya nyaris bulat sempurna dengan [[kepepatan]] sebesar sembilan per satu juta,<ref name="Godier">
{{Cite journal
|last=Godier |first=S. |last2=Rozelot |first2=J.-P.
|title=The solar oblateness and its relationship with the structure of the tachocline and of the Sun's subsurface
|url=http://aa.springer.de/papers/0355001/2300365.pdf
|format=PDF|journal=[[Astronomy and Astrophysics]]
|volume=355 |pages=365–374
|year=2000
|doi=
|bibcode=2000A&A...355..365G
|ref=harv
}}</ref> artinya diameter kutubnya berbeda 10&nbsp;km saja dengan diameter khatulistiwanya.<ref name="perfect sphere">{{cite web
|url=http://www.guardian.co.uk/science/2012/aug/16/sun-perfect-sphere-nature
|title=Sun is the most perfect sphere ever observed in nature | publisher=the Guardian | date=16 August 2012 | accessdate=August 19, 2012
|author=Jones, Geraint}}</ref> Karena Matahari terbuat dari [[plasma (fisika)|plasma]] dan tidak padat, rotasinya lebih cepat di bagian [[khatulistiwa]] ketimbang [[kutub benda astronomi|kutubnya]]. Peristiwa ini disebut [[rotasi Matahari|rotasi diferensial]] dan terjadi karena [[konveksi]] pada Matahari dan gerakan massa-nya, akibat [[gradasi suhu]] yang terlampau jauh dari inti ke permukaan. Massa tersebut mendorong sebagian [[momentum sudut]] Matahari yang berlawanan arah jarum jam jika dilihat dari kutub utara [[ekliptika]], sehingga kecepatan sudutnya didistribusikan kembali. Periode ''rotasi aktual'' ini diperkirakan 25,6 hari di khatulistiwa dan 33,5 hari di kutub. Tetapi akibat sudut pandang yang berubah-ubah dari Bumi saat mengorbit Matahari, ''rotasi tampak'' di khatulistiwa kira-kira 28 hari.<ref name=Phillips1995-78>{{Cite book|last=Phillips|first=Kenneth J. H.|title=Guide to the Sun|year=1995|publisher=[[Cambridge University Press]]|isbn=978-0-521-39788-9|pages=78–79}}</ref> Efek sentrifugal rotasi lambat ini 18 juta kali lebih lemah dibandingkan gravitasi permukaan di khatulistiwa Matahari. Efek pasang planet lebih lemah lagi dan tidak begitu memengaruhi bentuk Matahari.<ref name=Schutz2003>{{Cite book|last=Schutz|first=Bernard F.|title=Gravity from the ground up|year=2003|publisher=[[Cambridge University Press]]|isbn=978-0-521-45506-0|pages=98–99}}</ref>
 
Matahari adalah bintang [[Bintang Populasi I|Populasi I]] yang kaya elemen berat.{{efn|name=heavy elements}}<ref name=zeilik>
{{Cite book
|last=Zeilik|first=M.A.
|last2=Gregory|first2=S.A.
|title=Introductory Astronomy & Astrophysics
|edition=4th
|page=322
|publisher=[[Saunders College Publishing]]
|year=1998
|isbn=0-03-006228-4
}}</ref> Pembentukan Matahari diperkirakan diawali oleh gelombang kejut dari satu [[supernova]] terdekat atau lebih.<ref name="Falk">
{{Cite journal
|last=Falk |first=S. W. |last2=Lattmer |first2=J.M. |last3=Margolis |first3=S. H.
|title=Are supernovae sources of presolar grains?
|journal=[[Nature (journal)|Nature]]
|volume=270
|issue=5639 |pages=700–701
|year=1977
|doi=10.1038/270700a0
|ref=harv
|bibcode = 1977Natur.270..700F }}</ref> Teori ini didasarkan pada [[Keberlimpahan elemen kimia|keberlimpahan]] [[logam berat|elemen berat]] di Tata Surya, seperti [[emas]] dan [[uranium]], dibandingkan bintang-bintang [[Populasi II]] yang elemen beratnya sedikit. Elemen-elemen ini sangat mungkin dihasilkan oleh reaksi nuklir [[endotermik]] selama supernova atau [[transmutasi nuklir|transmutasi]] melalui [[penyerapan neutron]] di dalam sebuah bintang raksasa generasi kedua.<ref name=zeilik />
 
Matahari tidak punya batas pasti seperti planet-planet berbatu, dan di kepadatan gas di bagian terluarnya menurun seiring bertambahnya jarak dari pusat Matahari.<ref name=Zirker2002-11>{{Cite book|last=Zirker|first=Jack B.|title=Journey from the Center of the Sun|year=2002|publisher=[[Princeton University Press]]|isbn=978-0-691-05781-1|page=11}}</ref> Meski begitu, Matahari memiliki struktur interior yang jelas. Radius Matahari diukur dari pusatnya ke pinggir [[fotosfer]]. Fotosfer adalah lapisan terakhir yang tampak, karena lapisan-lapisan di atasnya terlalu dingin atau terlalu tipis untuk meradiasikan cahaya yang cukup agar dapat terlihat [[mata telanjang]]<ref name=Phillips1995-73>{{Cite book|last=Phillips|first=Kenneth J. H.|title=Guide to the Sun|year=1995|publisher=[[Cambridge University Press]]|isbn=978-0-521-39788-9|page=73}}</ref> di hadapan cahaya terang dari fotosfer. Selama [[gerhana Matahari]] total, ketika fotosfer terhalang Bulan, [[korona]] Matahari terlihat di sekitarnya.
 
Interior Matahari tidak bisa dilihat secara langsung dan Matahari sendiri tidak dapat ditembus [[radiasi elektromagnetik]]. Mengikuti [[seismologi]] yang memakai gelombang gempa untuk mengungkap struktur terdalam Bumi, disiplin [[helioseismologi]] memakai gelombang tekanan ([[suara infrasonik]]) yang melintasi interior Matahari untuk mengukur dan menggambar struktur terdalam Matahari.<ref name=Phillips1995-58>{{Cite book|last=Phillips|first=Kenneth J. H.|title=Guide to the Sun|year=1995|publisher=[[Cambridge University Press]]|isbn=978-0-521-39788-9|pages=58–67}}</ref> [[Model komputer]] Matahari juga dimanfaatkan sebagai alat bantu teoretis untuk menyelidiki lapisan-lapisan terdalamnya.
 
=== Inti ===
{{Main|Inti Matahari}}
[[Inti Matahari|Inti]] Matahari diperkirakan merentang dari pusatnya sampai 20–25% radius Matahari.<ref name="Garcia2007">
{{Cite journal
|last=García |first=R.
|coauthors=et al.
|title=Tracking solar gravity modes: the dynamics of the solar core
|journal=[[Science (jurnal)|Science]]
|volume=316 |issue=5831 |pages=1591–1593
|year=2007
|pmid=17478682
|doi=10.1126/science.1140598
|ref=harv
|bibcode=2007Sci...316.1591G
}}</ref> Kepadatannya mencapai {{val|150|u=g/cm3}}<ref name="Basu">
{{Cite journal
|author=Basu
|title=Fresh insights on the structure of the solar core
|bibcode=2009ApJ...699.1403B
|issue=699
|year=2009 |doi=10.1088/0004-637X/699/2/1403
|journal=The Astrophysical Journal
|volume=699
|page=1403
|last2=Chaplin
|first2=William J.
|last3=Elsworth
|first3=Yvonne
|last4=New
|first4=Roger
|last5=Serenelli
|first5=Aldo M.
|ref=harv
|authorlink=Basu et al.
|display-authors=1
|arxiv = 0905.0651 }}</ref><ref name=NASA1>{{cite web|url=http://solarscience.msfc.nasa.gov/interior.shtml |title=NASA/Marshall Solar Physics |publisher=Solarscience.msfc.nasa.gov |date=2007-01-18 |accessdate=2009-07-11}}</ref> (sekitar 150 kali lipat kepadatan air) dan suhu mendekati 15,7 juta [[kelvin]] (K).<ref name=NASA1/> Sebaliknya, suhu permukaan Matahari kurang lebih 5.800&nbsp;K. Analisis terkini terhadap data misi [[Solar and Heliospheric Observatory|SOHO]] menunjukkan adanya tingkat rotasi yang lebih cepat di bagian inti ketimbang di seluruh zona radiatif.<ref name="Garcia2007"/> Sepanjang masa hidup Matahari, energi dihasilkan oleh [[fusi nuklir]] melalui serangkaian tahap yang disebut [[reaksi rantai proton-proton|rantai p–p (proton–proton)]]; proses ini mengubah [[hidrogen]] menjadi [[helium]].<ref>{{Cite journal|last=Broggini|first=Carlo|date=26–28 June 2003|page=21|journal=Physics in Collision|title=Nuclear Processes at Solar Energy|bibcode=2003phco.conf...21B|arxiv=astro-ph/0308537|ref=harv}}</ref> Hanya 0,8% energi Matahari yang berasal dari [[siklus CNO]].<ref name=jpcs271_1_012031>{{Cite journal | last1=Goupil | first1=M. J. | last2=Lebreton | first2=Y. | last3=Marques | first3=J. P. | last4=Samadi | first4=R. | last5=Baudin | first5=F. | title=Open issues in probing interiors of solar-like oscillating main sequence stars 1. From the Sun to nearly suns | journal=Journal of Physics: Conference Series | volume=271 | issue=1 | page=012031 | month=January | year=2011 | doi=10.1088/1742-6596/271/1/012031 | bibcode=2011JPhCS.271a2031G | display-authors=1 | postscript=<!-- Bot inserted parameter. Either remove it; or change its value to "." for the cite to end in a ".", as necessary. -->{{inconsistent citations}} |arxiv = 1102.0247 }}</ref>
 
Inti adalah satu-satunya wilayah Matahari yang menghasilkan energi termal yang cukup melalui fusi; 99% tenaganya tercipta di dalam 24% radius Matahari, dan fusi hampir berhenti sepenuhnya pada tingkat 30% radius. Sisanya dipanaskan oleh energi yang ditransfer ke luar oleh radiasi dari inti ke layar konvektif di luarnya. Energi yang diproduksi melalui fusi di inti harus melintasi beberapa lapisan dalam perjalanan menuju fotosfer sebelum lepas ke angkasa dalam bentuk sinar Matahari atau [[energi kinetik]] partikel.<ref name=Zirker2002-15>{{Cite book|last=Zirker|first=Jack B.|title=Journey from the Center of the Sun|year=2002|publisher=[[Princeton University Press]]|isbn=978-0-691-05781-1|pages=15–34}}</ref><ref name=Phillips1995-47>{{Cite book|last=Phillips|first=Kenneth J. H.|title=Guide to the Sun|year=1995|publisher=[[Cambridge University Press]]|isbn=978-0-521-39788-9|pages=47–53}}</ref>
 
[[Rantai proton–proton]] terjadi sekitar {{val|9.2|e=37}} kali per detik di inti. Karena memakai empat [[proton]] bebas (nukleus hidrogen), reaksi ini kira-kira mengubah 3,7{{e|38}} proton menjadi [[partikel alpha]] (nukleus helium) setiap detiknya (dari total ~8,9{{e|56}} proton bebas di Matahari), atau sekitar 6,2{{e|11}} kg per detik.<ref name=Phillips1995-47/> Karena memfusi hidrogen ke helium melepaskan kurang lebih 0,7% massa terfusi dalam bentuk energi,<ref>p. 102, ''The physical universe: an introduction to astronomy'', Frank H. Shu, University Science Books, 1982, ISBN 0-935702-05-9.</ref> Matahari melepaskan energi dengan tingkat konversi massa–energi sebesar 4,26&nbsp;juta ton metrik per detik, 384,6&nbsp;[[Yotta-|yotta]] [[watt]] ({{val|3.846|e=26|u=W}}),<ref name=nssdc /> atau 9,192{{e|10}}&nbsp;[[setara TNT|megaton]] [[Trinitrotoluena|TNT]] per detik. Massa ini tidak dihancurkan untuk menciptakan energi, melainkan diubah menjadi setara energi dan diangkut ''dalam'' energi yang diradiasikan, seperti yang dijelaskan oleh konsep [[kesetaraan massa–energi]].
 
Produksi tenaga oleh fusi di inti bervariasi sesuai jaraknya dari pusat Matahari. Di pusat Matahari, model teori memperkirakan besarnya mencapai 276.5 watt/m<sup>3</sup>,<ref>[http://fusedweb.llnl.gov/CPEP/Chart_Pages/5.Plasmas/Sunlayers.html Table of temperatures, power densities, luminosities by radius in the Sun]. Fusedweb.llnl.gov (1998-11-09). Retrieved on 2011-08-30.</ref> kepadatan produksi tenaga yang kira-kira lebih mendekati metabolisme reptil daripada bom termonuklir.{{efn|name=power production density}} Puncak produksi tenaga di Matahari telah dibanding-bandingkan dengan panas volumetrik yang dihasilkan di dalam [[kompos|tumpukan kompos]] aktif. Keluaran tenaga Matahari yang luar biasa tidak diakibatkan oleh tenaga per volumenya yang tinggi, melainkan ukurannya yang besar.
 
Tingkat fusi di bagian inti berada dalam kesetimbangan yang bisa membaik sendiri: tingkat fusi yang agak lebih tinggi mengakibatkan inti memanas dan sedikit [[pemuaian panas|memuai]] terhadap [[berat]] lapisan terluarnya, sehingga mengurangi tingkat fusi dan memperbaiki [[Perturbasi (astronomi)|perturbasi]]; dan tingkat yang agak lebih rendah mengakibatkan inti mendingin dan sedikit menyusut, sehingga meningkatkan tingkat fusi dan memperbaikinya ke tingkat saat ini.<ref>{{Cite journal|last1=Haubold |first1=H.J.|last2=Mathai|first2=A.M.|date= May 18, 1994|page=102|volume=320|journal=Basic space science. AIP Conference Proceedings |title=Solar Nuclear Energy Generation & The Chlorine Solar Neutrino Experiment|doi=10.1063/1.47009|arxiv=astro-ph/9405040|bibcode=1995AIPC..320..102H|ref=harv}}</ref><ref>{{cite web|last=Myers|first=Steven T.|title=Lecture 11&nbsp;– Stellar Structure I: Hydrostatic Equilibrium|date=1999-02-18|accessdate=15 July 2009|url=http://www.aoc.nrao.edu/~smyers/courses/astro12/L11.html}}</ref>
 
[[Sinar gamma]] (foton berenergi tinggi) yang dilepaskan dalam reaksi fusi hanya diserap oleh beberapa militer plasma Matahari, kemudian dipancarkan kembali secara acak dalam bentuk energi yang lebih rendah. Karena itu, butuh waktu lama bagi radiasi untuk mencapai permukaan Matahari. Perkiraan waktu tempuh foton berkisar antara 10.000 sampai 170.000&nbsp;tahun.<ref name="NASA">
{{Cite journal
|author=NASA
|title=Ancient Sunlight
|url=http://sunearthday.nasa.gov/2007/locations/ttt_sunlight.php
|work=Technology Through Time
|issue=50
|year=2007
|accessdate=2009-06-24
|ref=harv
|authorlink=NASA
}}</ref> [[Neutrino]], yang mewakili sekitar 2% produksi energi total Matahari, hanya butuh 2,3 detik untuk mencapai permukaan. Karena transprotasi energi di Matahari adalah proses yang melibatkan foton dalam kesetimbangan termodinamik dengan zat, skala waktu transportasi energi di Matahari lebih panjang dengan rentang 30.000.000 tahun. Ini adalah waktu yang diperlukan Matahari untuk kembali ke keadaan stabil jika tingkat penciptaan energi di intinya tiba-tiba berubah.<ref>{{Cite journal
|author=Michael Stix
|title=On the time scale of energy transport in the sun
|doi=10.1023/A:1022952621810
|journal=Solar Physics
|volume=212
|issue=1
|pages=3–6
|date=January 2003
|url=http://www.springerlink.com/content/l256u14247171u67/
|bibcode = 2003SoPh..212....3S }}</ref>
 
Sepanjang bagian akhir perjalanan foton keluar Matahari, di lapisan konvektif terluar, tabrakannya lebih sedikit dan jauh dan energinya lebih rendah. Fotosfer adalah permukaan transparan Matahari tempat foton terlepas dalam bentuk [[cahaya tampak]]. Setiap sinar gamma di inti Matahari diubah menjadi beberapa juta foton cahaya tampak sebelum lepas ke luar angkasa. [[Neutrino]] juga dilepaskan oleh reaksi fusi di inti, namun tidak seperti foton, neutrino jarang berinteraksi dengan zat sampai-sampai semuanya bisa dengan mudah keluar dari Matahari. Selama beberapa tahun, pengukuran jumlah neutrino yang diproduksi di Matahari [[masalah neutrino Matahari|lebih rendah daripada yang diprediksi]] teori dengan faktor 3. Kesenjangan ini diselesaikan pada tahun 2001 melalui penemuan efek [[osilasi neutrino]]: Matahari memancarkan beberapa neutrino sesuai prediksi [[teori]], tetapi detektor neutrino kehilangan {{frac|2|3}} jumlahnya karena neutrino sudah berubah [[rasa (fisika partikel)|rasa]] saat dideteksi.<ref name="Schlattl">
{{Cite journal
|last=Schlattl |first=H.
|title=Three-flavor oscillation solutions for the solar neutrino problem
|journal=[[Physical Review D]]
|volume=64 |issue=1 |page=013009
|year=2001
|doi=10.1103/PhysRevD.64.013009
|ref=harv
|arxiv = hep-ph/0102063 |bibcode = 2001PhRvD..64a3009S }}</ref>
 
[[Berkas:Sun parts big.jpg|jmpl|300px|Potongan melintang bintang tipe Matahari ([[NASA]])]]
 
=== Zona radiatif ===
Kurang lebih di bawah 0,7 radius Matahari, material Matahari cukup panas dan padat sampai-sampai [[radiasi termal]] adalah cara utama untuk mentransfer energi dari inti.<ref name="autogenerated1">{{cite web|url=http://mynasa.nasa.gov/worldbook/sun_worldbook.html |title=NASA&nbsp;– Sun |publisher=World Book at NASA|accessdate=2012-10-10}}</ref> Zona ini tidak diatur oleh [[konveksi]] termal; meski begitu suhunya turun dari kira-kira 7 juta ke 2 juta kelvin seiring bertambahnya jarak dari inti.<ref name=NASA1/> [[Gradien suhu]] ini kurang dari nilai [[tingkat selang adiabatik]] sehingga tidak dapat menciptakan konveksi.<ref name=NASA1/> Energi ditransfer oleh [[radiasi]]—[[ion]] [[hidrogen]] dan [[helium]] memancarkan [[foton]], yang hanya bergerak sedikit sebelum diserap kembali oleh ion-ion lain.<ref name="autogenerated1"/> Kepadatannya turun seratus kali lipat (dari 20 g/cm<sup>3</sup> ke 0,2 g/cm<sup>3</sup>) dari 0,25 radius Matahari di atas zona radiasi.<ref name="autogenerated1"/><!-- http://adsabs.harvard.edu/abs/2008SoPh..251..101M -->
 
Zona radiatif dan zona konvektif dipisahkan oleh sebuah lapisan transisi, [[takhoklin]]. Ini adalah wilayah ketika perubahan fenomena mencolok antara rotasi seragam di zona radiatif dan rotasi diferensial di zona konveksi menghasilkan celah besar—kondisi ketika lapisan-lapisan horizontal saling bergesekan berlawanan arah.<ref>{{Cite book|url = http://books.google.com/?id=PLNwoJ6qFoEC&pg=PA193|isbn = 978-0-8493-3355-2|pages = 193–235|chapter = The solar tachocline: Formation, stability and its role in the solar dynamo|author = ed. by Andrew M. Soward...|year = 2005|publisher = CRC Press|location = Boca Raton|title = Fluid dynamics and dynamos in astrophysics and geophysics reviews emerging from the Durham Symposium on Astrophysical Fluid Mechanics, July 29 to August 8, 2002}}</ref> Gerakan cair yang ditemukan di zona konveksi di atasnya perlahan menghilang dari atas sampai bawah lapisan ini, sama seperti karakteristik tenang zona radiatif di bawah. Saat ini, diperkirakan bahwa sebuah dinamo magnetik di dalma lapisan ini menciptakan [[medan magnet]] Matahari (baca [[dinamo Matahari]]).<ref name=NASA1/>
 
=== Zona konvektif ===
Di lapisan terluar Matahari, dari permukaannya sampai kira-kira 200.000&nbsp;km di bawahnya (70% radius Matahari dari pusat), suhunya lebih rendah daripada di zona radiatif dan atom yang lebih berat tidak sepenuhnya terionisasikan. Akibatnya, transportasi panas radiatif kurang efektif. Kepadatan gas-gas ini sangat rendah untuk memungkinkan arus konvektif terbentuk. Material yang dipanaskan di takhoklin memanas dan memuai, sehingga mengurangi kepadatannya dan memungkinkan material tersebut naik. Pengaruhnya, konveksi termal berkembang saat [[termal|sel panas]] mengangkut mayoritas panas ke luar hingga fotosfer Matahari. Setelah material tersebut mendingin di fotosfer, kepadatannya meningkat, lalu tenggelam ke dasar zona konveksi. Di sana material memanfaatkan panas dari atas zona radiatif dan siklus ini berlanjut. Di fotosfer, suhu menurun hingga 5.7000 K dan kepadatannya turun hingga 0,2 g/m<sup>3</sup> (sekitar 1/6.000 kepadatan udara di permukaan laut).<ref name=NASA1/>
 
Kolom panas di zona konveksi membentuk jejak di permukaan Matahari yang disebut [[granul (fisika Matahari)|granulasi]] dan [[supergranulasi]]. Konveksi turbulen di bagian terluar interior Matahari ini menghasilkan dinamo "berskala kecil" yang menciptakan kutub magnetik utara dan selatan di seluruh permukaan Matahari.<ref name=NASA1/> Kolom panas Matahari disebut [[sel Bénard]] dan berbentuk prisma heksagon.<ref>
{{Cite book
|last=Mullan|first=D.J
|editor=Page, D., Hirsch, J.G.
|chapter=Solar Physics: From the Deep Interior to the Hot Corona
|title=From the Sun to the Great Attractor
|url=http://books.google.com/?id=rk5fxs55_OkC&pg=PA22
|page=22
|publisher=[[Springer Science+Business Media|Springer]]
|year=2000
|isbn=978-3-540-41064-5
}}</ref>
 
=== Fotosfer ===
[[Berkas:EffectiveTemperature 300dpi e.png|jmpl|250px|[[Suhu efektif]], atau suhu [[benda hitam]], Matahari (5777 K) adalah suhu yang harus dimiliki sebuah benda hitam berukuran sama agar menghasilkan total tenaga emisif yang sama.]]
{{Main|Fotosfer}}
Permukaan Matahari yang tampak, fotosfer, adalah lapisan yang di bawahnya Matahari menjadi [[opasitas (optik)|opak]] terhadap cahaya tampak.<ref name=Abhyankar1977/> Di atas fotosfer, sinar Matahari yang tampak bebas berkelana ke angkasa dan energinya terlepas sepenuhnya dari Matahari. Perubahan opasitas diakibatkan oleh berkurangnya jumlah [[anion hidrogen|ion H<sup>−</sup>]] yang mudah menyerap cahaya tampak.<ref name=Abhyankar1977/> Sebalinya, cahaya tampak yang kita lihat dihasilkan dalam bentuk elektron dan bereaksi dengan atom [[hidrogen]] untuk menghasilkan ion H<sup>−</sup>.<ref name="Gibson">
{{Cite book
|last=Gibson|first=E.G.
|title=The Quiet Sun
|publisher=[[NASA]]
|year=1973
|isbn=
|asin=B0006C7RS0
}}</ref><ref name="Shu">
{{Cite book
|last=Shu|first=F.H.
|title=The Physics of Astrophysics
|publisher=[[University Science Books]]
|volume=1
|year=1991
|isbn=0-935702-64-4
}}</ref>
Tebal fotosfer puluhan sampai ratusan kilometer, sedikit kurang opak daripada [[udara]] di Bumi. Karena bagian atas fotosfer lebih dingin daripada bagian bawahnya, citra Matahari tampak lebih terang di tengah daripada pinggir atau ''lengan'' cakram Matahari; fenomena ini disebut [[penggelapan lengan]].<ref name=Abhyankar1977/> Spektrum sinar Matahari kurang lebih sama dengan spektrum [[benda hitam]] yang beradiasi sekitar 6.000 [[kelvin|K]], berbaur dengan [[jalur penyerapan]] atomik dari lapisan tipis di atas fotosfer. Fotosfer memiliki kepadatan partikel sebesar ~10<sup>23</sup>&nbsp;m<sup>−3</sup> (sekitar 0,37% jumlah partikel per volume [[atmosfer Bumi]] di permukaan laut). Fotosfer tidak sepenuhnya terionisasikan—cakupan ionisasinya sekitar 3%, sehingga nyaris seluruh hidrogen dibiarkan berbentuk atom.<ref>{{cite journal|last=Rast|first=Mark|coauthors=Åke Nordlund, Robert F Stein, Juri Toomre|title=Ionization Effects in Three-Dimensional Solar Granulation Simulations|journal=The Astrophysical Journal|date=12|year=1993|month=February|url=http://adsabs.harvard.edu/full/1993ApJ...408L..53R|accessdate=31 December 2012}}</ref>
 
Selama penelitian awal terhadap [[spektrum optik]] fotosfer, beberapa jalur penyerapan yang ditemukan tidak ada kaitannya dengan [[elemen kimia]] apapun yang saat itu dikenal di Bumi. Pada tahun 1868, [[Norman Lockyer]] berhipotesis bahwa jalur-jalur penyerapan ini terbentuk oleh elemen baru yang ia sebut ''[[helium]]'', diambil dari nama dewa Matahari Yunani [[Helios]]. 25 tahun kemudian, helium berhasil diisolasi di Bumi.<ref name="Lockyer">
{{cite web
|last=Parnel |first=C.
|title=Discovery of Helium
|url=http://www-solar.mcs.st-andrews.ac.uk/~clare/Lockyer/helium.html
|publisher=[[University of St Andrews]]
|accessdate=2006-03-22
}}</ref>
 
=== Atmosfer ===
{{See also|Korona|Lingkaran korona}}
[[Berkas:Solar eclipse 1999 4 NR.jpg|jmpl|ka|250px|Saat [[gerhana Matahari]] total, [[korona]] Matahari dapat dilihat dengan mata telanjang selama periode totalitas yang singkat.]]
Bagian Matahari di atas fotosfer disebut ''atmosfer Matahari''.<ref name=Abhyankar1977/> Atmosfer dapat diamati menggunakan teleskop yang beroperasi di seluruh [[spektrum elektromagnet]], mulai dari radio hingga cahaya tampak sampai [[sinar gamma]], dan terdiri dari lima zona utama: ''suhu rendah'', [[kromosfer]], [[wilayah transisi Matahari|wilayah transisi]], [[korona]], dan [[heliosfer]].<ref name=Abhyankar1977/> Heliosfer, dianggap sebagai atmosfer terluar tipis Matahari, membentang ke luar melewati orbit [[Pluto]] hingga [[Heliopause (astronomi)|heliopause]] yang membentuk batas dengan [[medium antarbintang]]. Kromosfer, wilayah transisi, dan korona jauh lebih panas ketimbang permukaan Matahari.<ref name=Abhyankar1977/> Alasannya belum terbukti tepat; bukti yang ada memperkirakan bahwa [[gelombang Alfvén]] memiliki energi yang cukup untuk memanaskan korona.<ref>
{{Cite journal
|last=De Pontieu |first=B.
|coauthors=et al.
|title=Chromospheric Alfvénic Waves Strong Enough to Power the Solar Wind
|journal=[[Science (journal)|Science]]
|volume=318 |issue=5856 |pages=1574–77
|year=2007
|doi=10.1126/science.1151747
|pmid=18063784
|ref=harv
|bibcode = 2007Sci...318.1574D }}</ref>
 
Lapisan terdingin Matahari adalah wilayah suhu rendah yang terletak sekitar {{val|500|u=km}} di atas fotosfer dengan suhu kurang lebih {{val|4100|ul=K}}.<ref name=Abhyankar1977>{{Cite journal|last=Abhyankar|first=K.D.|title=A Survey of the Solar Atmospheric Models|year=1977|journal=Bull. Astr. Soc. India|volume=5|bibcode=1977BASI....5...40A|pages=40–44|url=http://prints.iiap.res.in/handle/2248/510|ref=harv}}</ref> Bagian Matahari ini cukup dingin untuk memungkinkan keberadaan molekul sederhana seperti [[karbon monoksida]] dan air, yang dapt dideteksi melalui spektrum penyerapan mereka.<ref name=Solanki1994>{{Cite journal|last=Solanki|first=S.K.|coauthors=, W. and Ayres, T.|title=New Light on the Heart of Darkness of the Solar Chromosphere |year=1994|journal=Science|pmid=17748350|volume=263|issue=5143|pages=64–66|doi=10.1126/science.263.5143.64|ref=harv|bibcode = 1994Sci...263...64S }}</ref>
 
Di atas lapisan suhu rendah ada lapisan setebal {{val|2000|u=km}} yang didominasi spektrum emisi dan jalur penyerapan.<ref name=Abhyankar1977/> Lapisan ini bernama ''kromosfer'' yang diambil dari kata Yunani ''chroma'', artinya warna, karena kromosfer terlihat seperti cahaya berwarna di awal dan akhir [[gerhana Matahari|gerhana Matahari total]].<ref name="autogenerated1"/> Suhu kromosfer meningkat perlahan seiring ketinggiannya, berkisar sampai {{val|20000|u=K}} di dekat puncaknya.<ref name=Abhyankar1977/> Di bagian teratas kromosfer, [[helium]] [[ionisasi|terionisasikan]] separuhnya.<ref name=Hansteen1997>{{Cite journal|last=Hansteen|first=V.H.|coauthors=Leer, E.|title=The role of helium in the outer solar atmosphere|year=1997|journal=The Astrophysical Journal|volume=482|issue=1|pages=498–509|doi=10.1086/304111|bibcode=1997ApJ...482..498H|ref=harv}}</ref>
 
[[Berkas:171879main LimbFlareJan12 lg.jpg|jmpl|kiri|350px|Diambil oleh [[Hinode]] Solar Optical Telescope tanggal 12 Januari 2007, citra Matahari ini menunjukkan sifat filamen pada plasma yang menghubungkan wilayah-wilayah berpolaritas magnet berbeda.]]
 
Di atas kromosfer, di [[wilayah transisi Matahari|wilayah transisi]] tipis (sekitar 200&nbsp;km), suhu naik cepat dari sekitar 20.000 [[kelvin|K]] di atas kromosfer hingga mendekati suhu korona sebesar 1.000.000 [[kelvin|K]].<ref name=Erdelyi2007/> Peningkatan suhu ini dibantu oleh ionisasi penuh helium di wilayah transisi, yang mengurangi pendinginan radiatif plasma secara besar-besaran.<ref name=Hansteen1997/> Wilayah transisi tidak terbentuk di ketinggian tetap. Wilayah ini membentuk semacam [[Halo (fenomena optik)|nimbus]] mengitari fitur-fitur kromosfer seperti [[spikula (fisika Matahari)|spikula]] dan [[filamen Matahari|filamen]] dan memiliki gerakan tak teratur yang konstan.<ref name="autogenerated1"/> Wilayah transisi sulit diamati dari permukaan Bumi, tetapi dapat diamati dari [[luar angkasa]] menggunakan instrumen yang sensitif terhadap [[spektrum elektromagnetik|spektrum]] [[ultraviolet|ultraviolet ekstrem]].<ref name=Dwivedi2006>{{Cite journal|last=Dwivedi|first=Bhola N.|title=Our ultraviolet Sun|year=2006|journal=Current Science|volume=91|issue=5|pages=587–595 |url=http://cs-test.ias.ac.in/cs/Downloads/article_40416.pdf|format=PDF|ref=harv}}</ref>
 
[[Korona]] adalah kepanjangan atmosfer telruar Matahari yang volumenya lebih besar daripada Matahari itu sendiri. Korona terus menyebar ke angkasa dan menjadi [[angin Matahari]] yang mengisi seluruh Tata Surya.<ref name=Russell2001/> Korona rendah, dekat permukaan Matahari, memiliki kepadatan partikel sekitar 10<sup>15</sup>–10<sup>16</sup>&nbsp;m<sup>−3</sup>.<ref name=Hansteen1997/>{{efn|name=particle density}} Suhu rata-rata korona dan angin Matahari sekitar 1.000.000–2.000.000 K; akan tetapi, suhu di titik terpanasnya mencapai 8.000.000–20.000.000 K.<ref name=Erdelyi2007/> Meski belum ada teori lengkap seputar suhu korona, setidaknya sebagian panasnya diketahui berasal dari [[rekoneksi magnetik]].<ref name=Erdelyi2007/><ref name=Russell2001>{{Cite book|last=Russell|first=C.T.|title=Space Weather (Geophysical Monograph)|year=2001|publisher=[[American Geophysical Union]]|chapter=Solar wind and interplanetary magnetic filed: A tutorial|editors=Song, Paul; Singer, Howard J. and Siscoe, George L.|isbn=978-0-87590-984-4|pages=73–88|url=http://www-ssc.igpp.ucla.edu/personnel/russell/papers/SolWindTutorial.pdf|format=PDF}}</ref>
 
[[Heliosfer]], yaitu volume di sekitar Matahari yang diisi plasma angin Matahari, merentang dari kurang lebih 20 radius Matahari (0.1 au) sampai batas terluar Tata Surya. Batas terdalamnya ditetapkan sebagai lapisan tempat arus [[angin Matahari]] menjadi ''superalfvénik''—artinya arus angin lebih cepat daripada kecepatan [[gelombang Alfvén]].<ref>
{{Cite book
|first=Emslie|last=A.G|first2=Miller|last2=J.A.
|chapter=Particle Acceleration
|chapterurl=http://books.google.de/books?id=W_oZYFplXX0C&pg=PA275
|editor=Dwivedi, B.N.
|title=Dynamic Sun
|page=275
|publisher=[[Cambridge University Press]]
|year=2003
|isbn=978-0-521-81057-9
}}</ref> Turbulensi dan dorongan dinamis di heliosfer tidak dapat memengaruhi bentuk korona Matahari di dalamnya, karena informasi hanya dapat bergerak pada kecepatan gelombang Alfvén. Angin Matahari terus bergerak ke luar melintasi heliosfer, membentuk medan magnet Matahari seperti [[spiral Parker|spiral]],<ref name=Russell2001/> sampai menyentuh [[heliopause (astronomi)|heliopause]] lebih dari 50 [[satuan astronomi|au]] dari Matahari. Pada Desember 2004, [[program Voyager|wahana Voyager 1]] melintasi front kejut yang diduga sebagai bagian dari heliosfer. Kedua wahana Voyager telah mencatat konsentrasi partikel energi yang tinggi saat mendekati batas tersebut.<ref>
{{cite press
|url=http://www.spaceref.com/news/viewpr.html?pid=16394
|title=The Distortion of the Heliosphere: Our Interstellar Magnetic Compass
|year=2005
|publisher=[[European Space Agency]]
|accessdate=2006-03-22
}}</ref>
 
=== Medan magnet ===
{{See also|Medan magnet bintang}}
[[Berkas:Sun - August 1, 2010.jpg|jmpl|250px|Di citra ultraviolet warna palsu ini, Matahari memiliki semburan Matahari kelas C3 (wilayah putih di kiri atas), sebuah tsunami Matahari (struktur mirip gelombang, kanan atas), dan beberapa filamen [[plasma (fisika)|plasma]] setelah medan magnet yang naik dari permukaan.]]
[[Berkas:Heliospheric-current-sheet.gif|jmpl|ka|250px|[[Lembar arus heliosfer]] merentang sampai batas terluar Tata Surya dan terbentuk oleh pengaruh medan magnet Matahari yang berotasi di [[Plasma (fisika)|plasma]] di [[medium antarplanet]].<ref>
{{cite web
|url=http://wso.stanford.edu/#MeanField
|title=The Mean Magnetic Field of the Sun
|publisher=[[Wilcox Solar Observatory]]
|year=2006
|accessdate=2007-08-01
}}</ref>]]
 
Matahari adalah bintang yang magnetnya aktif. Matahari memiliki [[medan magnet]] kuat dan yang berubah-ubah tiap tahun dan berbalik arah setiap sebelas tahun di sekitar maksimum Matahari.<ref name=Zirker2002-119>{{Cite book|last=Zirker|first=Jack B.|title=Journey from the Center of the Sun|year=2002|publisher=[[Princeton University Press]]|isbn=978-0-691-05781-1|pages=119–120}}</ref> Medan magnet Matahari menjadi penyebab sejumlah dampak yang secara kolektif disebut [[variasi Matahari|aktivitas Matahari]], termasuk [[titik Matahari]] di permukaan Matahari, [[semburan Matahari]], dan variasi [[angin Matahari]] yang mengangkut material melintasi Tata Surya.<ref name=Zirker2002>{{Cite book|last=Zirker|first=Jack B.|title=Journey from the Center of the Sun|year=2002|publisher=[[Princeton University Press]]|isbn=978-0-691-05781-1|pages=120–127}}</ref> Dampak aktivitas Matahari terhadap Bumi meliputi [[aurora (astronomi)|aurora]] di lintang tengah sampai tinggi dan gangguan komunikasi radio dan [[tenaga listrik]]. Aktivitas Matahari diduga memainkan peran besar dalam [[pembentukan dan evolusi Tata Surya]]. Aktivitas Matahari mengubah struktur [[ionosfer|atmosfer terluar]] Bumi.<ref name=Phillips1995>{{Cite book|last=Phillips|first=Kenneth J. H.|title=Guide to the Sun|year=1995|publisher=[[Cambridge University Press]]|isbn=978-0-521-39788-9|pages=14–15, 34–38}}</ref>
 
Semua materi di Matahari berbentuk [[gas]] dan bersuhu tinggi, disebut [[plasma (fisika)|plasma]]. Ini membuat Matahari bisa berotasi lebih cepat di khatulistiwa (sekitar 25 hari) daripada lintang yang lebih tinggi (sekitar 35 hari di dekat kutubnya). [[Rotasi Matahari|Rotasi diferensial]] lintang Matahari menyebabkan jalur [[medan magnet]]nya saling terikat seiring waktu, menghasilkan [[lingkaran korona|lingkaran medan magnet]] dari permukaan Matahari dan mencetus pembentukan [[titik Matahari]] dan [[prominensa Matahari]] (baca [[rekoneksi magnetik]]). Aksi ikat-ikatan ini menciptakan [[dinamo Matahari]] dan [[siklus titik Matahari|siklus]] aktivitas magnetik 11 tahun; medan magnet Matahari berbalik arah setiap 11 tahun.<ref>{{Cite news|url=http://archives.cnn.com/2001/TECH/space/02/16/sun.flips/index.html|title= Sci-Tech&nbsp;– Space&nbsp;– Sun flips magnetic field|date= 2001-02-16|accessdate=2009-07-11|work=CNN}}</ref><ref>{{cite web|url=http://science.nasa.gov/headlines/y2001/ast15feb_1.htm |title=The Sun Does a Flip |publisher=Science.nasa.gov |date=2001-02-15 |accessdate=2009-07-11}}</ref>
 
Medan magnet Matahari membentang jauh melewati Matahari itu sendiri. Plasma angin Matahari yang termagnetkan membawa medan magnet Mathari ke luar angkasa dan membentuk [[medan magnet antarplanet]].<ref name=Russell2001/> Karena plasma hanya mampu bergerak di jalur medan magnet, medan magnet antarplanet awalnya tertarik secara radial menjauhi Matahari. Karena medan di atas dan bawah khatulistiwa Matahari memiliki polaritas berbeda yang mengarah ke dan menjauhi Matahari, ada satu lembar arus tipis di bidang khatulistiwa Matahari yang disebut [[lembar arus heliosfer]].<ref name=Russell2001/> Pada jarak yang lebih jauh, rotasi Matahari memelintir medan magnet dan lembar arus menjadi struktur mirip [[spiral Archimedes]] yang disebut [[spiral Parker]].<ref name=Russell2001/> Medan magnet antarplanet lebih kuat daripada komponen dipol medan magnet Matahari. Medan magnet dipol Matahari sebesar 50–400&nbsp;[[tesla (satuan)|μT]] (di fotosfer) berkurang seiring jaraknya menjadi sekitar 0,1&nbsp;nT pada jarak Bumi. Meski begitu, menurut pengamatan wahana antariksa, bidang antarplanet di lokasi Bumi sekitar 5&nbsp;nT, kurang lebih seratus kali lebih besar.<ref name=Wang2003>{{Cite journal|last=Wang|first=Y.-M.|coauthors=Sheeley, N.R.|title=Modeling the Sun's Large-Scale Magnetic Field during the Maunder Minimum|year=2003|journal=The Astrophysical Journal|volume=591|issue=2|pages=1248–56|doi=10.1086/375449|bibcode=2003ApJ...591.1248W|ref=harv|last2=Sheeley}}</ref> Perbedaan ini disebabkan oleh medan magnet yang diciptakan oleh arus listrik di plasma yang menyelubungi Matahari.
 
== Pergerakan Matahari ==