Metode ensemble: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika
k Bot: Penggantian teks otomatis (-resiko +risiko)
Baris 81:
Stacking merupakan cara untuk mengkombinasi beberapa model, dengan konsep meta learner. dipakai setelah bagging dan boosting. tidak seperti bagging dan boosting, stacking memungkinkan mengkombinasikan model dari tipe yang berbeda. Ide dasarnya adalah untuk train learner tingkat pertama menggunakan kumpulan data training asli, dan kemudian menghasilkan kumpulan data baru untuk melatih learner tingkat kedua, di mana output dari learner tingkat pertama dianggap sebagai fitur masukan sementara yang asli label masih dianggap sebagai label data training baru. Pembelajar tingkat pertama sering dihasilkan dengan menerapkan algoritma learning yang berbeda.
 
Dalam fase training pada stacking, satu set data baru perlu dihasilkan dari classifier tingkat pertama. Jika data yang tepat yang digunakan untuk melatih classifier tingkat pertama juga digunakan untuk menghasilkan kumpulan data baru untuk melatih classifier tingkat kedua. proses tersebut memiliki resikorisiko yang tinggi yang akan mengakibatkan overfitting. sehingga disarankan bahwa contoh yang digunakan untuk menghasilkan kumpulan data baru dikeluarkan dari contoh data training untuk learner tingkat pertama, dan prosedur crossvalidasi.
 
<gallery>