== Bilangan bulat dari 801 sampai 899 ==
=== 800-an ===
* 801 = 3<sup>2</sup> ×× 89, bilangan Harshad
* 802 = 2 ×× 401, jumlah delapan [[bilangan prima]] berurutan (83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), [[:en:nontotient|nontotient]], [[:en:happy number|''happy number'' (bilangan bahagia; nomor bahagia)]]
* 803 = 11 ×× 73, jumlah tiga bilangan prima (263 + 269 + 271), jumlah sembilan berturut-turut bilangan prima (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), bilangan Harshad
* 804 = 2<sup>2</sup> ×× 3 ×× 67, nontotient, bilangan Harshad
** "804" adalah julukan untuk Wilayah Greater Richmond di negara bagian [[Virginia]], yang berasal dari kode area telepon (meskipun kode area itu meliputi area yang lebih besar).
* 805 = 5 ×× 7 ×× 23
* 806 = 2 ×× 13 ×× 31, bilangan sfenik, nontotient, jumlah totient untuk 51 bilangan bulat pertama, ''happy number''
* 807 = 3 ×× 269
* 808 = 2<sup>3</sup> ×× 101, bilangan strobogrammatika<ref name=":0">{{Cite OEIS|A000787|Strobogrammatic numbers|accessdate=2016-06-11}}</ref>
* 809 = bilangan prima, [[bilangan prima Sophie Germain]],<ref>{{Cite OEIS|A005384|Sophie Germain primes|accessdate=2016-06-11}}</ref> prima Chen, prima Eisenstein dengan tidak ada bagian imajiner
=== 810-an ===
* 810 = 2 ×× 3<sup>4</sup> ×× 5, bilangan Harshad
* 811 = bilangan prima, jumlah lima bilangan prima berturut-turut (151 + 157 + 163 + 167 + 173), Chen perdana, nomor bahagia, fungsi Mertens 811 menghasilkan 0
* 812 = 2<sup>2</sup> ×× 7 ×× 29, bilangan pronik,<ref name=":1">{{Cite OEIS|A002378|Oblong (or promic, pronic, or heteromecic) numbers| accessdate= 2016-06-11}}</ref> fungsi Mertens 812 menghasilkan 0
* 813 = 3 ×× 271
* 814 = 2 ×× 11 ×× 37, bilangan sfenik, fungsi Mertens 814 menghasilkan 0, nontotient
* 815 = 5 ×× 163
* 816 = 2<sup>4</sup> ×× 3 ×× 17, bilangan tetrahedral,<ref>{{Cite OEIS|A000292|Tetrahedral numbers|accessdate=2016-06-11}}</ref> [[:en:Padovan sequence|bilangan Padovan]],<ref>{{Cite OEIS|A000931|Padovan sequence|accessdate=2016-06-11}}</ref> bilangan Zuckerman
* 817 = 19 ×× 43, jumlah tiga bilangan prima berurutan (269 + 271 + 277), [[:en:centered hexagonal number|bilangan heksagonal berpusat]]<ref>{{Cite OEIS|A003215|Hex (or centered hexagonal) numbers|accessdate=2016-06-11}}</ref>
* 818 = 2 ×× 409, nontotient, bilangan strobogrammatika<ref name=":0" />
* 819 = 3<sup>2</sup> ×× 7 ×× 13, [[:En:square pyramidal number|bilangan piramidal kuadrat]]<ref>{{Cite OEIS|A000330|Square pyramidal numbers|accessdate=2016-06-11}}</ref>
=== 820-an ===
* 820 = 2<sup>2</sup> ×× 5 ×× 41, [[:en:triangular number|bilangan triangular]],<ref name=":2">{{Cite OEIS|A000217|Triangular numbers|accessdate=2016-06-11}}</ref> bilangan Harshad, nomor bahagia, repdigit (1111) dalam basis 9
* 821 = bilangan prima, [[prima kembar]], prima Eisenstein dengan tidak ada bagian imajiner, [[:en:prime quadruplet|prima quadruplet]] dengan 823, 827, 829
* 822 = 2 ×× 3 ×× 137, jumlah dua belas bilangan prima berturut-turut (43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 + 97), bilangan sfenik, anggota deret Mian–Chowla<ref>{{Cite OEIS|A005282|Mian-Chowla sequence|accessdate=2016-06-11}}</ref>
* 823 = bilangan prima, [[prima kembar]], fungsi Mertens 823 menghasilkan 0, prima quadruplet dengan 821, 827, 829
* 824 = 2<sup>3</sup> ×× 103, jumlah sepuluh bilangan prima berurutan (61 + 67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103), fungsi Mertens 824 menghasilkan 0, nontotient
* 825 = 3 ×× 5<sup>2</sup> ×× 11, [[bilangan Smith]],<ref name=":3">{{Cite OEIS|A006753|Smith numbers|accessdate=2016-06-11}}</ref> fungsi Mertens 825 menghasilkan 0, bilangan Harshad
* 826 = 2 ×× 7 ×× 59, bilangan sfenik
* 827 = bilangan prima, [[prima kembar]], bagian dari perdana quadruplet dengan {821, 823, 829}, jumlah tujuh berturut-turut bilangan prima (103 + 107 + 109 + 113 + 127 + 131 + 137), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner, [[:en:strictly non-palindromic number|strictly non-palindromic number]]<ref name=":4">{{Cite OEIS|A016038|Strictly non-palindromic numbers|accessdate=2016-06-11}}</ref>
* 828 = 2<sup>2</sup> ×× 3<sup>2</sup> ×× 23, bilangan Harshad
* 829 = bilangan prima, [[prima kembar]], prima quadruplet dengan {827, 823, 821}, jumlah tiga bilangan prima berurutan (271 + 277 + 281), Chen perdana
=== 830-an ===
* 830 = 2 ×× 5 ×× 83, bilangan sfenik, jumlah empat bilangan prima berturut-turut (197 + 199 + 211 + 223), nontotient, jumlah totient untuk 52 bilangan bulat pertama
* 831 = 3 ×× 277
* 832 = 2<sup>6</sup> ×× 13, bilangan Harshad
* 833 = 7<sup>2</sup> ×× 17
* 834 = 2 ×× 3 ×× 139, bilangan sfenik, jumlah enam bilangan prima berturut-turut (127 + 131 + 137 + 139 + 149 + 151), nontotient
* 835 = 5 ×× 167, bilangan Motzkin<ref>{{Cite OEIS|A001006|Motzkin numbers|accessdate=2016-06-11}}</ref>
* 836 = 2<sup>2</sup> ×× 11 ×× 19, [[[:en:weird number|nomor aneh]]
* 837 = 3<sup>3</sup> ×× 31
* 838 = 2 ×× 419
* 839 = bilangan prima, prima aman,<ref name=":5">{{Cite OEIS|A005385|Safe primes|accessdate=2016-06-11}}</ref> jumlah lima bilangan prima berturut-turut (157 + 163 + 167 + 173 + 179), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner, [[:en:highly cototient number|highly cototient number]]<ref>{{Cite OEIS|A100827|Highly cototient numbers|accessdate=2016-06-11}}</ref>
=== 840-an ===
* 840 = 2<sup>3</sup> ×× 3 ×× 5 ×× 7, [[:en:highly composite number|highly composite number]],<ref>{{Cite OEIS|A002182|Highly composite numbers|accessdate=2016-06-11}}</ref> angka terkecil yang dapat dibagi oleh angka 1 sampai 8 (lowest common multiple dari 1 sampai 8), sparsely totient number,<ref name=":6">{{Cite OEIS|A036913|Sparsely totient numbers|accessdate=2016-06-11}}</ref> bilangan Harshad dalam basis 2 sampai basis 10
* 841 = 29<sup>2</sup> = 20<sup>2</sup> + 21<sup>2</sup>, jumlah tiga bilangan prima berturut-turut (277 + 281 + 283), jumlah sembilan bilangan prima berturut-turut (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109), [[:en:centered square number|centered square number]],<ref>{{Cite OEIS|A001844|Centered square numbers|accessdate=2016-06-11}}</ref> [[:en:centered heptagonal number|centered heptagonal number]],<ref>{{Cite OEIS|A069099|Centered heptagonal numbers|accessdate=2016-06-11}}</ref> [[:en:centered octagonal number|centered octagonal number]]<ref>{{Cite OEIS|A016754|2=Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers|accessdate=2016-06-11}}</ref>
* 842 = 2 ×× 421, nontotient
* 843 = 3 ×× 281, bilangan Lucas<ref>{{Cite OEIS|A000032|Lucas numbers|accessdate=2016-06-11}}</ref>
* 844 = 2<sup>2</sup> ×× 211, nontotient
* 845 = 5 ×× 13<sup>2</sup>
* 846 = 2 ×× 3<sup>2</sup> ×× 47, jumlah delapan bilangan prima berturut-turut (89 + 97 + 101 + 103 + 107 + 109 + 113 + 127), nontotient, bilangan Harshad
* 847 = 7 ×× 11<sup>2</sup>, nomor bahagia
* 848 = 2<sup>4</sup> ×× 53
* 849 = 3 ×× 283, fungsi Mertens 849 menghasilkan 0
=== 850-an ===
* 850 = 2 ×× 5<sup>2</sup> ×× 17, fungsi Mertens 850 menghasilkan 0, nontotient, [[:en:Credit score (United States)#Range of scores|Fair Isaac credit score]] maksimum, kode panggilan negara untuk [[Korea Utara]]
* 851 = 23 ×× 37
* 852 = 2<sup>2</sup> ×× 3 ×× 71, bilangan pentagonal,<ref>{{Cite OEIS|A000326|Pentagonal numbers|accessdate=2016-06-11}}</ref> bilangan Smith<ref name=":3" />
** kode panggilan negara untuk [[Hong Kong]]
* 853 = bilangan prima, bilangan Perrin,<ref>{{Cite OEIS|A001608|Perrin sequence|accessdate=2016-06-11}}</ref> fungsi Mertens 853 menghasilkan 0, rata-rata dari pertama 853 bilangan prima adalah bilangan bulat (urutan {{OEIS|id=A045345}}OEIS{{OEIS|id=A045345}}, strictly non-palindromic number, jumlah grafik yang terhubung dengan 7 node
** kode panggilan negara untuk [[Makau]]
* 854 = 2 ×× 7 ×× 61, nontotient
* 855 = 3<sup>2</sup> ×× 5 ×× 19, bilangan dekagonal,<ref>{{Cite OEIS|A001107|10-gonal (or decagonal) numbers|accessdate=2016-06-11}}</ref> [[:en:centered cube number|centered cube number]]<ref>{{Cite OEIS|A005898|Centered cube numbers|accessdate=2016-06-11}}</ref>
** kode panggilan negara untuk [[Kamboja]]
* 856 = 2<sup>3</sup> ×× 107, bilangan nonagonal,<ref>{{Cite OEIS|A001106|9-gonal (or enneagonal or nonagonal) numbers|accessdate=2016-06-11}}</ref> [[:en:centered pentagonal number|centered pentagonal number]],<ref>{{Cite OEIS|A005891|Centered pentagonal numbers|accessdate=2016-06-11}}</ref> ''happy number''
** kode panggilan negara untuk [[Laos]]
* 857 = bilangan prima, jumlah tiga bilangan prima berurutan (281 + 283 + 293), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner
* 858 = 2 ×× 3 ×× 11 ×× 13, bilangan Giuga<ref>{{Cite OEIS|A007850|Giuga numbers|accessdate=2016-06-11}}</ref>
* 859 adalah bilangan prima<br />
=== 860-an ===
* 860 = 2<sup>2</sup> ×× 5 ×× 43, jumlah empat bilangan prima berturut-turut (199 + 211 + 223 + 227)
* 861 = 3 ×× 7 ×× 41, bilangan sfenik, triangular number, bilangan heksagonal,<ref>{{Cite OEIS|A000384|Hexagonal numbers|accessdate=2016-06-11}}</ref> bilangan Smith<ref name=":3" />
* 862 = 2 ×× 431
* 863 = bilangan prima, prima aman, jumlah lima bilangan prima berturut-turut (163 + 167 + 173 + 179 + 181), jumlah tujuh bilangan prima berturut-turut (107 + 109 + 113 + 127 + 131 + 137 + 139), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner
* 864 = 2<sup>5</sup> ×× 3<sup>3</sup>, jumlah prima kembar (431 + 433), jumlah enam bilangan prima berturut-turut (131 + 137 + 139 + 149 + 151 + 157), bilangan Harshad
* 865 = 5 ×× 173,
* 866 = 2 ×× 433, nontotient
* 867 = 3 ×× 17<sup>2</sup>
* 868 = 2<sup>2</sup> ×× 7 ×× 31, nontotient
* 869 = 11 ×× 79, fungsi Mertens 869 menghasilkan 0
=== 870-an ===
* 870 = 2 ×× 3 ×× 5 ×× 29, jumlah sepuluh bilangan prima (67 + 71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107), bilangan pronik,<ref name=":1" /> nontotient, sparsely totient number,<ref name=":6" /> bilangan Harshad
** Jumlah ini adalah [[:en:magic constant|magic constant]] ''n''××''n'' normal [[:En:magic square|magic square]] dan [[:En:Eight queens puzzle|''n''-queens problem]] untuk  ''n''  =  12.
* 871 = 13 ×× 67
* 872 = 2<sup>3</sup> ×× 109, nontotient
* 873 = 3<sup>2</sup> ×× 97, jumlah enam faktorial dari 1
* 874 = 2 ×× 19 ×× 23, jumlah dua puluh tiga bilangan prima pertama, jumlah tujuh pertama faktorial dari 0, nontotient, bilangan Harshad, nomor bahagia
* 875 = 5<sup>3</sup> ×× 7
* 876 = 2<sup>2</sup> ×× 3 ×× 73
* 877 = bilangan prima, bilangan Bell,<ref>{{Cite OEIS|A000110|Bell or exponential numbers|accessdate=2016-06-11}}</ref> prima Chen, fungsi Mertens 877 menghasilkan 0, strictly non-palindromic number.<ref name=":4" />
* 878 = 2 ×× 439, nontotient
* 879 = 3 ×× 293
=== 880-an ===
* 880 = 2<sup>4</sup> ×× 5 ×× 11, bilangan Harshad; bilangan 148-[[:en:polygonal number|gonal]]; jumlah ''n''××''n'' magic square untuk n = 4.
** kode panggilan negara untuk [[Bangladesh]]
* 881 = bilangan prima, [[prima kembar]], jumlah sembilan bilangan prima berturut-turut (79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), prima Chen, prima Eisenstein dengan tidak ada bagian imajiner, ''happy number''
* 882 = 2 ×× 3<sup>2</sup> ×× 7<sup>2</sup>, bilangan Harshad, jumlah totient untuk 53 bilangan bulat pertama
* 883 = bilangan prima, [[prima kembar]], jumlah tiga bilangan prima berturut-turut (283 + 293 + 307), fungsi Mertens 883 menghasilkan 0
* 884 = 2<sup>2</sup> ×× 13 ×× 17, fungsi Mertens 884 menghasilkan 0
* 885 = 3 ×× 5 ×× 59, bilangan sfenik
* 886 = 2 ×× 443, fungsi Mertens 886 menghasilkan 0
** kode panggilan negara untuk [[Taiwan]]
* 887 = bilangan prima diikuti oleh primal kesenjangan 20, prima aman,<ref name=":5" /> prima Chen,<ref name=":5" /> prima Eisenstein dengan tidak ada bagian imajiner
{| style="clear: right" align="right"
| [[ImageBerkas:Seven-segment 8.svg]][[ImageBerkas:Seven-segment 8.svg]][[ImageBerkas:Seven-segment 8.svg]]
|}
{{Utama|888 (angka)}}
* 888 = 2<sup>3</sup> ×× 3 ×× 37, jumlah delapan berturut-turut bilangan prima (97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), bilangan Harshad, strobogrammatic nomor<ref name=":0"/>
* 889 = 7 ×× 127, fungsi Mertens 889 menghasilkan 0
=== 890-an ===
* 890 = 2 ×× 5 ×× 89, bilangan sfenik, jumlah empat bilangan prima berturut-turut (211 + 223 + 227 + 229), nontotient
* 891 = 3<sup>4</sup> ×× 11, jumlah lima bilangan prima berturut-turut (167 + 173 + 179 + 181 + 191), bilangan oktahedral
* 892 = 2<sup>2</sup> ×× 223, nontotient
* 893 = 19 ×× 47, fungsi Mertens 893 menghasilkan 0
** Dianggap sebagai angka sial di [[Jepang]], karena angka-angkanya jika dibaca secara berurutan adalah terjemahan harfiah dari ''[[yakuza]]''.
* 894 = 2 ×× 3 ×× 149, bilangan sfenik, nontotient
* 895 = 5 ×× 179, bilangan Smith,<ref name=":3" /> bilangan Woodall,<ref>{{Cite OEIS|A003261|Woodall numbers|accessdate=2016-06-11}}</ref> fungsi Mertens dari 895 menghasilkan 0
* 896 = 2<sup>7</sup> ×× 7, jumlah enam bilangan prima berturut-turut (137 + 139 + 149 + 151 + 157 + 163), fungsi Mertens 896 menghasilkan 0
* 897 = 3 ×× 13 ×× 23, bilangan sfenik
* 898 = 2 ×× 449, fungsi Mertens (898) menghasilkan 0, nontotient
* 899 = 29 ×× 31, ''happy number''
== Referensi ==
{{Reflist}}
[[Kategori:Bilangan bulat]]
|