Limit fungsi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tidak ada ringkasan suntingan Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler |
Membalikkan revisi 14581578 oleh 223.255.230.228 (bicara) Tag: Pembatalan |
||
Baris 7:
== Sejarah ==
Meskipun termasuk secara implisit dalam pengembangan kalkulus pada abad ke-17 dan 18, gagasan modern limit fungsi baru dibahas oleh [[Bernard Bolzano|Bolzano]], yang pada 1817, memperkenalkan dasar-dasar teknik [[epsilon-delta]].<ref>[http://www-history.mcs.st-andrews.ac.uk/Biographies/Bolzano.html MacTutor History of Bolzano]</ref> Namun karyanya tidak diketahui semasa hidupnya.
Notasi tertulis menggunakan singkatan '''lim''' dengan anak panah diperkenalkan oleh [[G. H. Hardy|Hardy]] dalam bukunya ''A Course of Pure Mathematics'' pada tahun 1908.<ref name="Miller" />
Baris 25 ⟶ 24:
=== Limit searah ===
[[Berkas:Upper semi.png|jmpl|Limit saat: x → x<sub>0</sub><sup>+</sup> ≠ x → x<sub>0</sub><sup>-</sup>. Maka, limit x → x<sub>0</sub> tidak ada.]]
Baris 44 ⟶ 42:
=== Limit fungsi pada ketakhinggaan ===
[[Berkas:Limit-at-infinity-graph.png|jmpl|250px| Limit fungsi ini ada pada ketakhinggaan.]]
Baris 78 ⟶ 75:
\lim\limits_{x \to \infty} & \frac {ax^m+b}{px^n+q} & = \frac{a}{p}, \qquad m=n \\
\lim\limits_{x \to \infty} & \sqrt{ax^2+bx+c} - \sqrt{px^2+qx+r} & = \frac{b-q}{2 \sqrt{a}}, \qquad a=p \\
\lim\limits_{x \to \infty} & \sqrt[3]{ax^3+bx^2+cx+d} - \sqrt[3]{px^3+qx^2+rx+s} & = \frac{b-q}{3 \sqrt[3]{a^2}}, \qquad a=p \\
\lim\limits_{x \to \infty} & (1 + \frac{1}{x})^x & = e \\
\lim\limits_{x \to 0} & (1 + x)^\frac{1}{x} & = e \\
|