Analitik tertambah: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika |
|||
Baris 4:
''Augmented Analytics'' mencakup:
* Persiapan data tertambah (''augmented data preparation''), yang menggunakan otomatisasi pemelajaran mesin untuk menambah profil dan kualitas data, harmonisasi, pemodelan, manipulasi, pengayaan, pengembangan dan katalogisasi metadata.<ref name=":0">{{Cite web|url=https://www.gartner.com/en/conferences/apac/data-analytics-australia/why-attend/event-resources/research-augmented-analytics|title=Gartner Data & Analytics Summit 2019 {{!}} Sydney, Australia|website=Gartner|language=en|access-date=2019-04-04}}</ref>
* Penemuan data tertambah (''augmented data discovery''
* Ilmu data tertambah (''augmented data science'') dan Pemelajaran Mesin (''Machine Learning''), yang mengotomatisasikan aspek kunci dari pemodelan analitik lanjutan seperti pemilihan fitur. Hal ini mengurangi kebutuhan akan keterampilan khusus untuk menghasilkan, mengoperasikan, dan mengelola model analitik lanjutan <ref name=":0" />.
Baris 17:
Walaupun alat penemuan data berbasis visual ini mudah digunakan, karena pengguna menganalisa data secara manual dengan membuat ''[[Bahasa kueri|queries]]'' untuk menginvestigasi hipotesis, hal ini tidak memungkinkan bagi mereka untuk menemukan semua pola dan kombinasi yang mungkin, seperti apakah temuan mereka adalah yang paling relevan, signifikan dan dapat ditindaklanjuti. Bergantung pada pengguna bisnis untuk menemukan pola secara manual dapat mengakibatkan mereka bias pada hipotesis mereka sendiri, kehilangan temuan yang penting, dan menarik kesimpulan mereka sendiri yang salah atau tidak lengkap, yang dapat mempengaruhi keputusan dan hasil <ref name=":0" />.
Visualisasi merupakan cara yang ampuh untuk menemukan dan mengkomunikasikan pola dalam data (lebih dari tabel atau daftar). Namun, visualiasi tidak selalu menyoroti temuan yang signifikan secara statistik. Untuk itu, diperlukan interpretasi pengguna atau analisis statistik lebih lanjut untuk menentukan apakah temuan tersebut relevan, signifikan, dan dapat ditindaklanjuti. Terlebih lagi, menemukan wawasan dari analitik lanjut memerlukan keahlian dari
===
Pada platform penemuan data berbasis visual, eksplorasi manual interaktif menggunakan visualiasi merupakan fitur pendefinisinya. Sedangkan, pada ''augmented analytics'', otomatisasi pembelajaran mesin pada penemuan wawasan dan proses eksplorasi merupakan fitur pendefinisinya. Alat tersebut memungkinkan pengguna dan
''Augmented analytic'' dapat mengurangi waktu eksplorasi dan identifikasi wawasan yang salah atau kurang relevan. Menerapkan berbagai algoritma dan pembelajaran data secara paralel dan menjelaskan temuan yang dapat ditindaklanjuti kepada pengguna, mengurangi risiko hilangnya wawasan penting dalam data, dibandingkan dengan eksplorasi manual. Hal ini juga mengoptimalkan keputusan dan tindakan yang dihasilkan. Pergeseran paradigma ini membutuhkan investasi dalam literasi data di seluruh organisasi karena wawasan ini akan didistribusikan ke semua karyawan <ref name=":0" />.
== Alur Kerja ''Augmented Analytic
Saat ini, dalam bidang analitik,
=== Menyiapkan Data ''(Augmented Data preparation)'' ===
Baris 31:
=== Menemukan pola pada data ''(Augmented Data Discovery)'' ===
Daripada analis secara manual menguji semua kombinasi data, maka diimplementasikan secara otomatis algoritma untuk mendeteksi korelasi, segmen, kelompok, outlier, dan relasi pada ''augmented analytics''. Hanya hasil yang paling signifikan dan relevan secara statistiklah yang akan ditampilkan pada pengguna dalam bentuk visualisasi cerdas yang dioptimalkan untuk interpretasi pengguna. Menerapkan berbagai algoritma pada data secara paralel mengurangi risiko akan kehilangan wawasan yang penting pada data. Kebanyakan, platform penemuan data membuat model dasar terbuka untuk diinspeksi, diuji, dan divalidasi oleh
Otomatisasi pembelajaran mesin juga memasuki platform ilmu data (''[[:en:Data_science|data science]]'') untuk mempersingkat proses pembuatan fitur dan model. Pengguna dari ''augmented data discovery'' adalah orang bisnis atau
''Augmented data discovery'' dan a''ugmented data science'', serta pembelajaran mesin sama-sama mengurangi waktu eksplorasi dan identifikasi wawasan yang salah atau tidak relevan. Diperlukan proses kolaborasi antara keduanya untuk memfokuskan analis bisnis pada hal yang penting dan memberikan prototipe awal pada
==== Perbedaan antara Platform ''Augmented Data Discovery'' dan ''Augmented Data Science'' ====
Platform ''augmented data discovery'' memberikan wawasan pada ''citizen data scientist''. Sebuah model dihasilkan dan dapat ditanamkan pada aplikasi, setelah pemeriksaan lanjut oleh ''data scientist'' spesialis. Namun, sasaran atau luarannya adalah wawasan. ''[https://docs.oracle.com/cd/E23507_01/Search.20073/ATGSearchQueryRef/html/s0202naturallanguagequeries01.html Natural Language Query]'' (NLQ) dan ''[[:en:Natural-language_generation|Natural Language Generation]]'' (NLG) merupakan fitur pengalaman pengguna yang penting. Sebaliknya, platform ''augmented data science'' , secara otomatis menghasilkan model baik bagi ''citizen data scientist'' maupun ''data scientist'' spesialis atau untuk ditanamkan. Platform ini membantu membangun model, mengelola siklus hidup, dan tata kelola. Perbedaan antara kedua platform hampir tidak kentara dan menyempit ke sebuah titik di mana konvergensi yang lebih besar mungkin terjadi <ref name=":0" />.
==== Perbedaan antara Augmented Data Discovery dan Smart Visualization ====
''Augmented data discovery'' harus dapat dibedakan secara jelas dari ''smart visualization''. Yang terakhir adalah fitur deteksi pola yang secara otomatis menampilkan data dalam tipe, susunan, warna pembuatan label atau level detil visualisasi terbaik untuk mengoptimalkan wawasan untuk pengguna, tanpa manipulasi tambahan (''filtering, sorting, label positioning,'' dll.)<ref name=":0" />.
=== Membagi dan mengoperasikan temuan dari data ''(Sharing and Operationalizing Findings from Data)'' ===
Platform BI modern dan analitik telah membuat kemajuan yang signifikan dengan cara membuat visualisasi dari data pada ''dashboard'' atau ''storyboard'' interaktif dan memberikan kapabilitas untuk membantu dalam hal berbagi dan bersosialisasi mengenai temuan yang didapat. Namun, visualisasi seringkali mengaburkan apa yang benar-benar signifikan dari sebuah data dan banyak pengguna tidak memiliki kemampuan untuk sepenuhnya menginterpretasikan wawasan berbasis visual yang signifikan secara statistik. Dengan penambahan bahasa alami, platform ''augmented data discovery'' secara otomatis menyajikan temuan melalui narasi secara tertulis atau lisan, bersama dengan visualisasi yang memberi tahu pengguna tentang apa yang paling penting bagi mereka untuk ditindaklanjuti<ref name=":0" />.
== Catatan kaki ==
|