Sistem koordinat polar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika
LaninBot (bicara | kontrib)
k Perubahan kosmetik tanda baca
Baris 255:
:<math>\hat{\mathbf{r}}=(\cos(\varphi),\sin(\varphi))</math>
in the direction of '''r''' and
:<math>\hat{\boldsymbol\varphi}=(-\sin(\varphi),\cos(\varphi)) = \hat {\mathbf{k}} \times \hat {\mathbf{r}} \ , </math>
in the plane of the motion perpendicular to the radial direction, where <math>\hat{\mathbf {k}}</math> is a unit vector normal to the plane of the motion.
 
Then
 
:<math> \mathbf{r} = (x, \ y ) = r (\cos \varphi ,\ \sin \varphi) = r \hat{\mathbf{r}}\ , </math>
 
:<math> \dot {\mathbf r} = (\dot x, \ \dot y ) = \dot r (\cos \varphi ,\ \sin \varphi) + r \dot \varphi (-\sin \varphi ,\ \cos \varphi) = \dot r \hat {\mathbf r} + r \dot \varphi \hat {\boldsymbol{\varphi}} \ , </math>
 
:<math> \ddot {\mathbf r } = (\ddot x, \ \ddot y ) = \ddot r (\cos \varphi ,\ \sin \varphi) + 2\dot r \dot \varphi (-\sin \varphi ,\ \cos \varphi) + r\ddot \varphi (-\sin \varphi ,\ \cos \varphi) - r {\dot \varphi }^2 (\cos \varphi ,\ \sin \varphi)\ = </math>
::<math> \left( \ddot r - r\dot\varphi^2 \right) \hat{\mathbf r} + \left( r\ddot\varphi + 2\dot r \dot\varphi \right) \hat{\boldsymbol{\varphi}} \ = (\ddot r - r\dot\varphi^2)\hat{\mathbf{r}} + \frac{1}{r}\; \frac{d}{dt} \left(r^2\dot\varphi\right) \hat{\boldsymbol{\varphi}}</math>
 
Baris 275:
=====''Co-rotating frame''=====
For a particle in planar motion, one approach to attaching physical significance to these terms is based on the concept of an instantaneous ''co-rotating frame of reference''.<ref name=Taylor>For the following discussion, see {{Cite book|author=John R Taylor|title=Classical Mechanics|page=§9.10, pp. 358–359|isbn=1-891389-22-X|publisher=University Science Books|year=2005}}</ref> To define a co-rotating frame, first an origin is selected from which the distance ''r''(''t'') to the particle is defined. An axis of rotation is set up that is perpendicular to the plane of motion of the particle, and passing through this origin. Then, at the selected moment ''t'', the rate of rotation of the co-rotating frame Ω is made to match the rate of rotation of the particle about this axis, ''dφ''/''dt''. Next, the terms in the acceleration in the inertial frame are related to those in the co-rotating frame. Let the location of the particle in the inertial frame be (''r(''t''), ''φ''(''t'')), and in the co-rotating frame be (''r(t), ''φ''′(t)''). Because the co-rotating frame rotates at the same rate as the particle, ''dφ''′/''dt'' = 0. The fictitious centrifugal force in the co-rotating frame is ''mrΩ<sup>2</sup>, radially outward. The velocity of the particle in the co-rotating frame also is radially outward, because ''dφ''′/''dt'' = 0. The ''fictitious Coriolis force'' therefore has a value −2''m''(''dr''/''dt'')Ω, pointed in the direction of increasing ''φ'' only. Thus, using these forces in Newton's second law we find:
:<math>\boldsymbol{F} + \boldsymbol{F_{cf}} + \boldsymbol{F_{Cor}} = m \ddot{\boldsymbol{r}} \ , </math>
where over dots represent time differentiations, and '''F''' is the net real force (as opposed to the fictitious forces). In terms of components, this vector equation becomes:
:<math>F_r + mr\Omega^2 = m\ddot r</math>
:<math>F_{\varphi}-2m\dot r \Omega = mr \ddot {\varphi} \ , </math>
which can be compared to the equations for the inertial frame:
:<math>F_r = m \ddot r -mr \dot {\varphi}^2 \ </math>