Limit fungsi: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Perubahan kosmetik tanda baca |
|||
Baris 69:
:<math>\begin{matrix}
\lim\limits_{x \to 0} & \frac{x}{\sin x} & = 1 \\
\lim\limits_{x \to 0} & \frac{x}{\tan x} & = 1 \\
\lim\limits_{x \to 0} & \frac{\sin x}{x} & = 1 \\
\lim\limits_{x \to 0} & \frac{\tan x}{x} & = 1 \\
\lim\limits_{x \to \infty} & x \sin (\frac{1}{x}) & = 1 \\
\lim\limits_{x \to \infty} & x \tan (\frac{1}{x}) & = 1 \\
\lim\limits_{x \to 0} & \frac{ax}{\sin bx} & = \frac{a}{b} \\
\lim\limits_{x \to 0} & \frac{ax}{\tan bx} & = \frac{a}{b} \\
\lim\limits_{x \to 0} & \frac{\sin ax}{bx} & = \frac{a}{b} \\
\lim\limits_{x \to 0} & \frac{\tan ax}{bx} & = \frac{a}{b} \\
\lim\limits_{x \to \infty} & \frac {ax^m+b}{px^n+q} & = \frac{a}{p}, \qquad m=n \\
\lim\limits_{x \to \infty} & \sqrt{ax^2+bx+c} - \sqrt{px^2+qx+r} & = \frac{b-q}{2 \sqrt{a}}, \qquad a=p \\
|