Sel surya: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika
k bentuk baku
Baris 64:
* 1941 - [[Vadim Lashkaryov]] menemukan pertemuan p-n pada sel proto [[Tembaga(I) oksida|Cu<sub>2</sub>O]] dan [[Perak sulfida|Ag<sub>2</sub>S.]]<ref>Lashkaryov, V. E. (1941) [http://ujp.bitp.kiev.ua/files/journals/53/si/53SI11p.pdf Investigation of a barrier layer by the thermoprobe method] [https://web.archive.org/web/20150928014344/http://ujp.bitp.kiev.ua/files/journals/53/si/53SI11p.pdf Diarsipkan], Izv. Akad. Nauk SSSR, Ser. Fiz. '''5''', 442–446, English translation: Ukr. J. Phys. '''53''', 53–56 (2008)</ref>
* 1946 - [[Russell Ohl]] mematenkan sel surya semikonduktor junction modern,<ref>"Light sensitive device" {{US patent|2402662}} Issue date: June 1946</ref> sambil mengerjakan serangkaian kemajuan yang akan mengarah pada [[transistor]].
* 1954 - sel fotovoltaik praktis pertama didemonstrasikan secara publik di [[Bell Laboratories]].<ref>{{Cite journal|date=April 2009|title=April 25, 1954: Bell Labs Demonstrates the First Practical Silicon Solar Cell|url=http://www.aps.org/publications/apsnews/200904/physicshistory.cfm|journal=APS News|publisher=American Physical Society|volume=18|issue=4}}</ref> Para penemu adalah [[Calvin Souther Fuller]], [[Daryl Chapin]] dan [[Gerald Pearson]]. <ref name="Tsokos2010">{{Cite book|first=K. A.|last=Tsokos|title=Physics for the IB Diploma Full Colour|url={{google books |plainurl=y |id=uWVQrIZqz_MC}}|date=28 January 2010|publisher=Cambridge University Press|isbn=978-0-521-13821-5}}</ref>
* 1958 - sel surya menjadi terkenal dengan penggabungannya ke satelit [[Pelopor I|Vanguard I.]]
 
Baris 88:
Pemutakhiran lebih lanjut mengurangi biaya produksi hingga di bawah $ 1 per watt, dengan biaya grosir jauh di bawah $ 2. [[Saldo sistem|Biaya saldo sistem]] sejak saat itu menjadi lebih tinggi daripada biaya panel surya itu sendiri. Jajaran komersial besar dapat dibangun, pada 2010, di bawah $ 3,40 per watt, sepenuhnya beroperasi.<ref>$1/W Photovoltaic Systems DOE whitepaper August 2010</ref><ref name="247wallst.com">[http://247wallst.com/2011/10/06/solar-stocks-does-the-punishment-fit-the-crime-fslr-spwra-stp-jaso-tsl-ldk-tan/ Solar Stocks: Does the Punishment Fit the Crime?]. 24/7 Wall St. (6 October 2011). Retrieved 3 January 2012.</ref>
 
Ketika industri semikonduktor berpindah menuju [[Boule (kristal)|boule]] yang semakin besar, peralatan lama menjadi tidak mahal. Ukuran sel surya tumbuh ketika peralatan menjadi tersedia di pasar surplus; Panel asli [[ARCO]] Solar menggunakan sel dengan diameter {{Convert|2|to|4|in|mm|-1}}. Panel pada 1990-an dan awal 2000-an umumnya digunakan wafer 125 &nbsp;mm. Dan sejak 2008, hampir semua panel baru menggunakan sel 156 &nbsp;mm. Penyebaran dari [[Tampilan layar datar|televisi layar datar]] pada akhir 1990-an dan awal 2000-an menyebabkan tersedianya lembaran kaca besar berkualitas tinggi untuk menutupi panel.
 
Selama tahun 1990-an, sel [[polisilikon]] ("poli") menjadi semakin populer. Sel-sel ini menawarkan efisiensi yang lebih rendah dibandingkan dengan monosilikon ("mono"), tetapi mereka tumbuh dalam kuantitas besar yang mengurangi biaya. Pada pertengahan 2000-an, sel poli menjadi dominan di pasar panel berbiaya rendah, tetapi baru-baru ini mono kembali digunakan secara luas.
Baris 99:
Sel surya biasanya dinamai dengan [[Semikonduktor|bahan semikonduktor]] pembuatnya. [[Daftar bahan semikonduktor|Bahan]]-[[Daftar bahan semikonduktor|bahan]] ini harus memiliki karakteristik tertentu untuk menyerap [[sinar matahari]]. Beberapa sel dirancang untuk menangani sinar matahari yang mencapai permukaan bumi, sementara yang lain dioptimalkan untuk [[Panel surya di pesawat ruang angkasa|digunakan di ruang angkasa]]. Sel surya dapat dibuat hanya dari satu lapisan tunggal bahan penyerap cahaya ([[Pertemuan p-n|pertemuan tunggal]]) atau menggunakan beberapa konfigurasi fisik ([[Multi-persimpangan|multipertemuan]]) untuk memanfaatkan berbagai mekanisme penyerapan dan pemisahan muatan.
 
Sel surya dapat diklasifikasikan menjadi sel generasi pertama, kedua dan ketiga. Sel generasi pertama — juga disebut sel konvensional, tradisional, atau berbasis [[Wafer (elektronik)|wafer]] — terbuat dari [[silikon kristal]], teknologi PV yang dominan secara komersial, yang mencakup bahan-bahan seperti [[polisilikon]] dan [[silikon monokristalin]]. Sel generasi kedua adalah sel [[Sel surya film tipis|surya film tipis]], yang meliputi [[silikon amorphous|silikon amorf]], [[Fotovoltaik kadmium telluride|CdTe]] dan sel [[Sel surya tembaga indium gallium selenide|CIGS]] dan secara komersial signifikan dalam skala [[pembangkit listrik fotovoltaik]], [[Membangun photovoltaics terintegrasi|membangun fotovoltaik terintegrasi]] atau dalam [[Sistem daya yang berdiri sendiri|sistem daya]] kecil yang berdiri sendiri. [[Sel fotovoltaik generasi ketiga|Generasi ketiga dari sel surya]] mencakup sejumlah teknologi film tipis yang sering digambarkan sebagai fotovoltaik pegari — kebanyakan dari teknologi generasi ini belum diterapkan secara komersial dan masih dalam tahap penelitian atau pengembangan. Banyak yang menggunakan bahan organik, seringkalisering kali senyawa [[Kimia organologam|organologam]] serta zat anorganik. Terlepas dari kenyataan bahwa efisiensinya rendah dan stabilitas bahan penyerap sering kali terlalu rendah untuk aplikasi komersial, ada banyak penelitian yang diinvestasikan ke dalam teknologi ini karena mereka menjanjikan untuk mencapai tujuan menghasilkan biaya rendah, efisiensi tinggi sel surya.
 
=== Silikon kristal ===
Baris 106:
== Lihat pula ==
 
[[Berkas:solar cell.png|jmpl|250x|ka|Sebuah '''sel surya''', terbuat dari wafer silikon poly-crystalline.]]<br />
 
* [[Gedung otonom]]
 
* [[Pengembangan energi masa depan]]
* [[Teknologi hijau]]