Superkapasitor: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Perubahan kosmetik tanda baca |
k clean up, replaced: dari pada → daripada (3) |
||
Baris 3:
'''Superkapasitor''' (atau dalam bahasa Inggris: '''supercap''', '''ultracapacitor''' or '''Goldcap'''<ref name="industrial-panasonic">Panasonic, Electric Double Layer Capacitor, Technical guide,1. Introduction,[http://industrial.panasonic.com/www-data/pdf/ABC0000/ABC0000TE1.pdf Panasonic Goldcaps] {{Webarchive|url=https://web.archive.org/web/20140109235659/http://industrial.panasonic.com/www-data/pdf/ABC0000/ABC0000TE1.pdf|date=2014-01-09}}</ref>) adalah [[kapasitor]] yang memiliki nilai kapasitansi jauh melebihi kapasitor lain (namun dengan batas [[Tegangan listrik|tegangan]] yang lebih rendah), dan dapat dianggap sebagai pertengahan antara [[kondensator elektrolit|kapasitor elektrolit (biasa)]] dan [[baterai isi ulang]]. Superkapasitor dapat menyimpan muatan per kubik 10 hingga 100 kali lebih banyak dari kapasitor elektrolit, bisa menerima dan menyalurkan muatan lebih cepat dari baterai, dan mempunyai toleransi terhadap siklus cas/pakai lebih baik dari baterai yang dapat dicas ulang.
Superkapasitor digunakan dalam aplikasi yang membutuhkan sumber energi yang memiliki siklus cas/pakai lebih cepat
Tidak seperti kapasitor biasa yang menggunakan [[dielektrik]] padat, superkapasitor menggunakan kapasitansi elektrostatis lapis-ganda dan pseudo-kapasitansi elektrokimia, yang keduanya turut andil dalam total kapasitansi yang dimiliki superkapasitor, dengan beberapa perbedaan:
* Kapasitor lapis-ganda elektrostatis (''electrostatic double-layer capacitors''/EDLCs) menggunakan [[karbon]] sebagai [[elektrode]] atau sejenis dengan jumlah kapasitansi elektrostatis lapis-ganda lebih besar dari jumlah pseudo-kapasitansi elektrokimia, menimbulkan pemisahan muatan lapis-ganda [[Hermann von Helmholtz|Helmholtz]] pada permukaan elektrode konduktif dan elektrolit. Jumlah pemisahan muatannya adalah beberapa [[ångström]] (0,3-0,8 [[Nanometer|nm]]), lebih kecil
* Pseudo-kapasitor elektrokimia menggunakan [[Oksida|metal oksida]] atau elektrode berbahan [[polimer konduktif]] dengan jumlah pseudo-kapasitansi elektrokimia lebih tinggi ditambah dengan kapasitansi lapis-ganda. Pseudo-kapasitansi dicapai melalui pemidahan elektron Faradais dengan [[redoks]], interkalasi, dan penyerapan oleh permukaan elektrode.
* Kapasitor hibrid, seperti kapasitor litium-ion, menggunakan elektrode dengan karakteristik berbeda: satu menonjolkan kapasitansi elektrostatis sementara yang lain lebih menonjolkan kapasitansi elektrokimia.
Baris 30:
Pada akhir 1980-an, bahan elektrode yang lebih baik ditemukan, sehingga nilai kapasitansinya lebih tinggi. Pada waktu yang sama, pengembangan elektrolit dengan tingkat konduktivitas lebih tinggi mengurangi tingkat ''equivalent series resistance'' (ESR) sehingga meningkatkan arus pada saat dicas mau pun dipakai. Superkapasitor dengan tingkat resistansi internal rendah dikembangkan pada 1982 oleh Pinnacle Research Institute (PRI) untuk kepentingan militer, dan dipasarkan dengan merek dagang "PRI Ultracapacitor". Pada 1992, Maxwell Laboratories (kini Maxwell Technologies) mengambil alih hasil riset PRI tersebut, dan dinamai ulang sebagai "Boost Caps".<ref name="Namisnyk">{{cite techreport|author=Adam Marcus Namisnyk|title=A survey of electrochemical supercapacitor technology|url=http://services.eng.uts.edu.au/cempe/subjects_JGZ/eet/Capstone%20thesis_AN.pdf|accessdate=2015-02-21|deadurl=yes|archiveurl=https://web.archive.org/web/20141222044332/http://services.eng.uts.edu.au/cempe/subjects_JGZ/eet/Capstone%20thesis_AN.pdf|archivedate=2014-12-22|df=}}</ref>
Karena jumlah tegangan mempengaruhi jumlah isi energi kapasitor, maka periset mulai mencari cara untuk meningkatkan kadar [[tegangan rusak]] yang dimiliki elektrolit. Pada 1994, menggunakan anode dari kapasitor elektrolit tantalum berdaya 200V, David A. Evans mengembangkan "Electrolytic-Hybrid Electrochemical Capacitor".<ref>{{cite patent|country=US|number=5369547|title=Containers with anodes and cathodes with electrolytes|gdate=1994-11-29|invent1=David A. Evans}}</ref><ref>David A. Evans (Evans Company): ''[http://www.evanscap.com/pdf/carts14.pdf High Energy Density Electrolytic-Electrochemical Hybrid Capacitor]'' In: ''Proceedings of the 14th Capacitor & Resistor Technology Symposium.'' 22 March 1994</ref> Kapasitor tersebut menggabungkan fitur dari kapasitor elektrolit dan elektrokimia. Mereka menggabungkan tingkat kekuatan dielektrik dari anode kapasitor elektrolit dan nilai kapasitansi tinggi dari katoda berbahan metal oksida (ruthenum(VI) oksida) yang bersifat pseudo-kapasitif dari kapasitor elektrokimia, menghasilkan kapasitor elektrokimia hibrid. Dinamai Cappatery oleh Evans,<ref>Evans Capacitor Company 2007 [http://www.evanscap.com/the_capattery.htm Capattery series]</ref> mempunyai isi energi lima kali lebih besar
Pengembangan mutakhir meliputi kapasitor litium-ion. Kapasitor hibrid diprakarsai oleh FDK pada 2007.<ref>{{cite web|url=http://www.fdk.com/company_e/ayumi2000-e.html|title=FDK, Corporate Information, FDK History 2000s|publisher=FDK|accessdate=2015-02-21}}</ref> Mereka menggabungkan elektrode karbon elektrostatik dengan pre-doped elektrode elektrokimia litium-ion. Kombinasi tersebut meningkatkan nilai kapasitansi. Ditambah dengan proses pre-doping yang mengurangi jumlah potensial pada anoda dan menghasilkan sel tegangan yang lebih tinggi.
|