Rodosena: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
HsfBot (bicara | kontrib)
k Bot: Perubahan kosmetika
HsfBot (bicara | kontrib)
k replaced: elektroda → elektrode (2)
Baris 57:
== Sejarah ==
[[Berkas:Zeise's-salt-anion-from-xtal-3D-SF.png|jmpl|kiri|[[Model ruang terisi]] dari [(η<sup>2</sup>-C<sub>2</sub>H<sub>4</sub>)PtCl<sub>3</sub>]<sup>−</sup>, [[anion]] dari garam Zeise, berdasarkan data kristalografi sinar-X<ref name="Zeise anion 1"/><ref name="Zeise anion 2"/>]]
Penemuan dalam [[kimia organologam]] telah mengarah pada wawasan penting ke dalam [[ikatan kimia]]. [[Garam Zeise]], K[PtCl<sub>3</sub>(C<sub>2</sub>H<sub>4</sub>)]·H<sub>2</sub>O, dilaporkan tahun 1831<ref name="Zeise discovery" /> dan penemuan [[Ludwig Mond|Mond]] pada Ni(CO)<sub>4</sub> terjadi tahun 1888.<ref name="leigh-2002"/> Masing-masing mengandung ikatan antara pusat logam dan molekul kecil, [[etilena]] dalam kasus garam Zeise dan [[karbon monoksida]] dalam kasus [[nikel tetrakarbonil]].<ref name="Zeise review" /> Model ruang terisi dari anion garam Zeise (gambar kiri)<ref name="Zeise anion 1"/><ref name="Zeise anion 2"/> menunjukkan ikatan langsung antara pusat logam [[platina]] (ditunjukkan dengan warna biru) dan atom karbon (ditampilkan dalam warna hitam) dari [[ligan]] etilena; ikatan logam–karbon tersebut adalah karakteristik yang menentukan dari spesi [[organologam]]. Model ikatan tidak dapat menjelaskan sifat ikatan logam–alkena sampai [[model Dewar-Chatt-Duncanson]] diusulkan pada tahun 1950-an.<ref name="Dewar-Chatt-DuncansonDCW 1"/><ref name="DCW 1Dewar-Chatt-Duncanson"/><ref name="DCW 2"/><ref name="astruc-2007"/> Formulasi awal hanya melingkupi ikatan logam–alkena<ref name="leigh-2002"/> tetapi model tersebut diperluas dari waktu ke waktu untuk mencakup sistem seperti [[logam karbonil]] (termasuk [Ni(CO)<sub>4</sub>]) di mana [[ikatan balik π]] sangat penting.<ref name=astruc-2007/>
 
{{multiple image
Baris 75:
Sifat-sifat kobaltosena yang dilaporkan oleh Wilkinson dan Fischer menunjukkan bahwa kation kobaltisinium unipositif [Co(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]<sup>+</sup> menunjukkan stabilitas yang mirip dengan ferrocene itu sendiri. Pengamatan ini tidak terduga mengingat bahwa kation kobaltisinium dan ferosena adalah [[isoelektronik]], meskipun ikatan tidak dipahami pada saat itu. Namun demikian, pengamatan tersebut mengarahkan Wilkinson dan [[F. Albert Cotton]] untuk mencoba sintesis [[garam]] rodosenium<ref name=cenium-cinium group=Note/> dan iridosenium.<ref name="JACS_1953" /> Mereka melaporkan sintesis banyak garam rodosenium, termasuk yang mengandung anion [[bromida|tribromida]] ([Rh(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]Br<sub>3</sub>), [[perklorat]] ([Rh(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]ClO<sub>4</sub>), dan [[garam Reinecke|reineckat]] ([Rh(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>] [Cr(NCS)<sub>4</sub>(NH<sub>3</sub>)<sub>2</sub>]·H<sub>2</sub>O), serta menemukan bahwa penambahan dipikrilamina menghasilkan senyawa yang mengandung [Rh(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>] [N(C<sub>6</sub>H<sub>2</sub>N<sub>3</sub>O<sub>6</sub>)<sub>2</sub>].<ref name="JACS_1953" /> Dalam setiap kasus, kation rodosenium ditemukan memiliki stabilitas yang tinggi. Wilkinson dan Fischer melanjutkan untuk berbagi [[Hadiah Nobel dalam Kimia]] tahun 1973 "untuk karya rintisan mereka, yang dilakukan secara independen, pada kimia organologam, yang disebut [[senyawa sandwich]]".<ref name="Nobel Prize"/><ref name="New Scientist Nobel Prize"/>
 
Stabilitas metalosena dapat langsung dibandingkan dengan melihat [[potensial reduksi]] pada [[reduksi]] satu elektron dari kation unipositif. Data berikut disajikan relatif terhadap [[elektrodaelektrode kalomel jenuh]] (SCE) dalam [[asetonitril]]:
 
:[Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]<sup>+</sup> &nbsp; / &nbsp; [Fe(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>] &nbsp; &nbsp; +0.38&nbsp;V<ref name="ferrocenium redox couple"/>
Baris 81:
:[Rh(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>]<sup>+</sup> &nbsp; / &nbsp; [Rh(C<sub>5</sub>H<sub>5</sub>)<sub>2</sub>] &nbsp; &nbsp; −1.41&nbsp;V<ref name="El_Murr_1979" />
 
Data ini jelas menunjukkan stabilitas ferosena netral dan kation kobaltosenium dan rodosenium. Rodosena adalah sekitar 500&nbsp;mV lebih mereduksi daripada kobaltosena, menunjukkan bahwa lebih mudah teroksidasi dan karenanya kurang stabil.<ref name="El_Murr_1979" /> Investigasi [[polarografi]] awal dari rodosenium perklorat pada [[pH]] netral menunjukkan puncak gelombang katodik pada −1.53&nbsp;V (versus SCE) pada [[elektrodaelektrode raksa tetes]], sesuai dengan formasi rodosena dalam larutan, tetapi para peneliti tidak dapat mengisolasi produk netral dari larutan. Dalam penelitian yang sama, upaya untuk mendeteksi [[iridosena]] dengan memaparkan garam iridosenium ke dalam kondisi oksidasi tidak berhasil bahkan pada pH tinggi.<ref name="JACS_1953" /> Data ini konsisten dengan rodosena yang sangat tidak stabil dan dapat menunjukkan bahwa iridosena bahkan lebih tidak stabil lagi.
 
== Sintesis ==
Baris 98:
=== Penggunaan biomedis turunan ===
[[Berkas:Haloperidol.svg|jmpl|300px|[[Struktur molekul]] [[haloperidol]], suatu obat [[Antipsikotik tipikal|antipsikotik]] konvensional. Gugus fluorofenil berada di tepi kiri dari struktur yang ditunjukkan]]
Telah ada penelitian ekstensif ke dalam [[metalofarmaseutika]],<ref name=clarke-1999/><ref name=jones-2007/> termasuk diskusi tentang senyawa rodium dalam kedokteran.<ref name="Rh in medicine"/> Sebuah badan penelitian yang substansial telah meneliti menggunakan turunan metalosena dari [[rutenium]]<ref name=clarke-2002/> dan besi<ref name=fouda-2007/> sebagai metalofarmaseutika. Salah satu bidang penelitian tersebut telah menggunakan metalosena dalam gugus fluorofenil di [[haloperidol]],<ref name="Wenzel"/> yang merupakan [[obat-obatan]] yang digolongkan sebagai [[antipsikotik tipikal]]. Senyawa ferosenil–haloperidol diteliti memiliki struktur (C<sub>5</sub>H<sub>5</sub>)Fe(C<sub>5</sub>H<sub>4</sub>)–C(=O)–(CH<sub>2</sub>)<sub>3</sub>–N(CH<sub>2</sub>CH<sub>2</sub>)<sub>2</sub>C(OH)–C<sub>6</sub>H<sub>4</sub>Cl dan dapat diubah menjadi analog ruteniumnya melalui reaksi transmetalasi. Menggunakan [[isotop]] [[radioaktif]] [[rutenium-103|<sup>103</sup>Ru]] menghasilkan suatu radiofarmaka rutenosenil–haloperidol dengan afinitas tinggi bagi [[paru-paru]] namun tidak pada [[jaringan (biologi)|jaringan]] [[otak]] pada [[tikus]].<ref name="Wenzel" /> [[Peluruhan beta]] dari <sup>103</sup>Ru menghasilkan [[Isomer nuklir#Isomer metastabil|isotop metastabil]] [[rodium-103m|<sup>103''m''</sup>Rh]] dalam suatu senyawa rodosenil–haloperidol. Senyawa ini, seperti turunan rodosena lainnya, memiliki konfigurasi elektron valensi-19 yang tidak stabil dan cepat teroksidasi menjadi spesi kation rodosenium–haloperidol yang diharapkan.<ref name="Wenzel" /> Pemisahan spesi rutenosenil–haloperidol dan rodosenium–haloperidol serta distribusinya dalam masing-masing organ tubuh telah dipelajari.<ref name="organ distrib"/> <sup>103''m''</sup>Rh memiliki [[waktu paruh]] 56&nbsp;menit dan memancarkan [[sinar gama]] dengan energi 39.8&nbsp;[[Elektronvolt|keV]], sehingga [[peluruhan gama]] isotop rodium harus diikuti segera setelah peluruhan beta isotop rutenium. [[Radionuklida]] pemancar beta- dan gamma yang digunakan secara medis termasuk [[iodin-131|<sup>131</sup>I]], [[Radiofarmakologi#Besi-59|<sup>59</sup>Fe]], dan [[Radiofarmakologi#Kalsium-47|<sup>47</sup>Ca]], serta <sup>103''m''</sup>Rh telah diusulkan untuk penggunaannya dalam [[radioterapi]] bagi tumor kecil.<ref name="Rh in medicine" />
 
=== Interaksi logam–logam dalam metalosena terhubung ===