Teorema Pythagoras: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
kTidak ada ringkasan suntingan
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler
kTidak ada ringkasan suntingan
Tag: VisualEditor Suntingan perangkat seluler Suntingan peramban seluler
Baris 116:
 
[[Berkas:Garfield_Pythagoras.svg|jmpl|Diagram bukti Garfield]]
Bukti terkait diterbitkan oleh Presiden Amerika [[James A. Garfield]] (kemudian [[Perwakilan Amerika Serikat|Perwakilan A.S]].) (lihat diagram).<ref name="Garfield">Published in a weekly mathematics column: {{cite journal|author=James A Garfield|year=1876|title=Pons Asinorum|url=http://www.maa.org/press/periodicals/convergence/mathematical-treasure-james-a-garfields-proof-of-the-pythagorean-theorem|journal=The New England Journal of Education|volume=3|issue=14|page=161|ref=harv}} as noted in {{cite book|url=https://books.google.com/?id=3tG_FRQ9N1QC&cd=1&dq=%22mathematical+universe%22+inauthor%3AWilliam+inauthor%3ADunham&q=New+England+Journal#search_anchor|title=The mathematical universe: An alphabetical journey through the great proofs, problems, and personalities|author=William Dunham|publisher=Wiley|year=1997|isbn=0-471-17661-3|page=96}} and in [http://www.math.usma.edu/people/rickey/hm/Dates/April.pdf A calendar of mathematical dates: April 1, 1876] {{Webarchive|url=https://web.archive.org/web/20100714153516/http://www.math.usma.edu/people/Rickey/hm/Dates/April.pdf|date=July 14, 2010}} by V. Frederick Rickey</ref><ref name="animation">{{cite web|url=http://math.colgate.edu/faculty/dlantz/Pythpfs/Garfldpf.html|title=Garfield's proof of the Pythagorean Theorem|last=Lantz|first=David|website=Math.Colgate.edu|archive-url=https://web.archive.org/web/20130828104818/http://math.colgate.edu/faculty/dlantz/Pythpfs/Garfldpf.html|archive-date=2013-08-28|accessdate=2018-01-14|url-status=dead}}</ref><ref>Maor, Eli, ''The Pythagorean Theorem'', Princeton University Press, 2007: pp. 106-107.</ref> Alih-alih menggunakan persegi, sebuah [[Trapesium (geometri)|trapesium]], yang dapat dibangun dari bujur sangkar di kedua bukti di atas dengan membagi dua diagonal dari innerdalam squarepersegi, untuk memberikan trapesium seperti yang ditunjukkan pada diagram. [[Trapezoid#Area|Luas trapesium]] dapat dihitung menjadi setengah luas persegi, yaitu
 
: <math>\frac{1}{2}(b+a)^2.</math>