Geometri: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
123569yuuift (bicara | kontrib)
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Æ 246810 (bicara | kontrib)
Geometri non-Euklides: Perubahan kecil.
Tag: Suntingan perangkat seluler Suntingan peramban seluler
Baris 231:
Geometri Euklides bukanlah satu-satunya bentuk geometri historis yang dipelajari. [[Geometri bola]] telah lama digunakan oleh astronom, astrolog, dan navigator.<ref name="Rosenfeld2012">{{cite book|author=Boris A. Rosenfeld|title=Sejarah Geometri Non-Euclidean: Evolusi Konsep Ruang Geometri|url=https://books.google.com/books?id=3wzSBwAAQBAJ|date=8 September 2012|publisher=Springer Science & Business Media|isbn=978-1-4419-8680-1}}</ref>
 
[[Immanuel Kant]] berpendapat bahwa hanya ada satu, ''mutlak'', geometri, yang diketahui benar ''a priori'' oleh fakultas pikiran batin: Geometri Euklides adalah [[sintetik a priori]].<ref>Kline (1972) "Pemikiran matematis dari zaman kuno hingga modern", Oxford University Press, p. 1032. Kant tidak menolak 'kemungkinan' logis (analitik a priori) dari geometri non-Euklides, lihat [[Jeremy Gray]], "Ide Ruang Euclidean, Non-Euklides, dan Relativistik", Oxford, 1989; p. 85. Beberapa menyiratkan bahwa, dalam terang ini, Kant sebenarnya telah ''meramalkan'' perkembangan geometri non-Euklides, lih. Leonard Nelson, "Filsafat dan Aksioma," Socratic Method and Critical Philosophy, Dover, 1965, p. 164.</ref> Pandangan ini pada awalnya agak ditantang oleh para pemikir seperti [[Saccheri]], kemudian akhirnya dibatalkan oleh penemuan revolusioner [[geometri non-EuclideanEuklides]] dalam karya-karya Bolyai, Lobachevsky, dan Gauss (yang tidak pernah menerbitkan teorinya).<ref name="Sommerville1919">{{cite book|author=Duncan M'Laren Young Sommerville|title=Elemen Geometri Non-Euklides ...|url=https://books.google.com/books?id=6eASAQAAMAAJ&pg=PA15|year=1919|publisher=Open Court|pages=15ff}}</ref> They demonstrated that ordinary [[Euclidean space]] is only one possibility for development of geometry. A broad vision of the subject of geometry was then expressed by [[Riemann]] in his 1867 inauguration lecture ''Über die Hypothesen, welche der Geometrie zu Grunde liegen'' (''On the hypotheses on which geometry is based''),<ref>{{cite web|url=http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/ |title=Ueber die Hypothesen, welche der Geometrie zu Grunde liegen |url-status=dead |archiveurl=https://web.archive.org/web/20160318034045/http://www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/ |archivedate=18 March 2016 |df= }}</ref> hanya setelah kematiannya. Ide baru Riemann tentang ruang terbukti penting dalam [[teori relativitas umum]] [[Albert Einstein]]. [[Geometri Riemannian]], yang mempertimbangkan ruang yang sangat umum di mana pengertian panjang didefinisikan, adalah andalan geometri modern.<ref name="Pesic2007">{{cite book|author=Peter Pesic|title=Di luar Geometri: Makalah Klasik dari Riemann hingga Einstein|url=https://books.google.com/books?id=Z67x6IOuOUAC|date=1 January 2007|publisher=Courier Corporation|isbn=978-0-486-45350-7}}</ref>
 
===Topologi===