Kategori grup abelian: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Membuat halaman baru Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
k clean up using AWB |
||
Baris 1:
Dalam [[matematika]], [[teori kategori
== Sifat ==
Baris 6:
[[Monomorfisme]] pada '''Ab''' adalah homomorfisme grup [[injektif]], [[epimorfisme]] adalah homomorfisme grup [[konjektur]], dan [[isomorfisme]] adalah homomorfisme kelompok [[bijektif]].
'''Ab''' adalah [[subkategori lengkap]] dari '''Grp''', [[kategori grup
:{{math|(''f''+''g'')(''x''+''y'') {{=}} ''f''(''x''+''y'') + ''g''(''x''+''y'') {{=}} ''f''(''x'') + ''f''(''y'') + ''g''(''x'') + ''g''(''y'') {{=}} ''f''(''x'') + ''g''(''x'') + ''f''(''y'') + ''g''(''y'') {{=}} (''f''+''g'')(''x'') + (''f''+''g'')(''y'')}}
Persamaan ketiga mensyaratkan kelompok menjadi abelian. Penambahan morfisme ini mengubah '''Ab''' menjadi [[kategori preadditif]], dan karena [[jumlah langsung grup abelian
Dalam '''Ab''', pengertian [[kernel (teori kategori)
<!--
The [[product (category theory)|product]] in '''Ab''' is given by the [[direct product of groups|product of groups]], formed by taking the [[cartesian product]] of the underlying sets and performing the group operation componentwise. Because '''Ab''' has kernels, one can then show that '''Ab''' is a [[complete category]]. The [[coproduct]] in '''Ab''' is given by the direct sum; since '''Ab''' has cokernels, it follows that '''Ab''' is also [[cocomplete]].
Baris 20:
Taking [[direct limit]]s in '''Ab''' is an [[exact functor]]. Since the group of integers '''Z''' serves as a [[Generator (category theory)|generator]], the category '''Ab''' is therefore a [[Grothendieck category]]; indeed it is the prototypical example of a Grothendieck category.
An object in '''Ab''' is [[injective module|injective]] if and only if it is a [[divisible group]]; it is [[projective module|projective]] if and only if it is a [[free abelian group]]. The category has a projective generator ('''Z''') and an [[injective cogenerator]] ('''Q'''/'''Z''').
Given two abelian groups ''A'' and ''B'', their [[tensor product]] ''A''⊗''B'' is defined; it is again an abelian group. With this notion of product, '''Ab''' is a [[closed monoidal category|closed]] [[monoidal category|symmetric monoidal category]].
Baris 37:
{{DEFAULTSORT:Category Of Abelian Groups}}
[[
[[
|