Akar fungsi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika
123569yuuift (bicara | kontrib)
Menambahkan bagian
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 1:
{{short description|Elemen domain yang nilai fungsinya nol}}
{{redirect|Akar polinomial|menemukan akar polinomial|Akar-menemukan polinomial|sifat lanjutan|Sifat dari akar polinom}}
{{redirect|Akar dari sebuah fungsi | setengah iterasi dari sebuah fungsi|Akar kuadrat fungsional}}
{{redirect|Himpunan Zero|album musik|Zero Set}}
{{Css Image Crop |Image = X-intercepts.svg |bSize = 300 |cWidth = 300 |cHeight = 110 |oLeft = 0 |oTop = 100 |Location = right |Description = Grafik fungsi cos(''x'') pada domain <math>\scriptstyle{[-2\pi,2\pi]}</math>. ''x'' ditandai dengan warna merah. Akar fungsi di dalam grafik ini adalah ''x''=<math>\scriptstyle\frac{-3\pi}{2}</math>, <math>\scriptstyle\frac{-\pi}{2}</math>, <math>\scriptstyle\frac{\pi}{2}</math> dan <math>\scriptstyle\frac{3\pi}{2}</math>.}}
 
Baris 10 ⟶ 14:
 
Untuk mencari akar suatu [[fungsi polinomial]], diperlukan metode [[aproksimasi]] (seperti [[metode Newton]]). Namun, beberapa fungsi polinomial dengan derajat yang tidak lebih tinggi dari 4 dapat dicari akarnya dengan menggunakan [[aljabar]].
 
'''Akar''' dari sebuah [[polinomial]] adalah nol dari [[fungsi polinomial]] yang sesuai.<ref name=":0" /> [[Teorema dasar aljabar]] menunjukkan bahwa setiap bukan nol [[polinomial]] memiliki jumlah akar paling banyak sama dengan [[Derajat polinomial | derajat]], dan bahwa jumlah akar dan derajatnya sama jika seseorang mempertimbangkan akar kompleks (atau lebih umum, akar dalam [[ekstensi aljabar tertutup]]) dihitung dengan [[perkalian]].<ref>{{Cite web|url=https://www.mathplanet.com/education/algebra-2/polynomial-functions/roots-and-zeros|title=Roots and zeros (Algebra 2, Polynomial functions)|website=Mathplanet|language=en|access-date=2019-12-15}}</ref> Misalnya, polinomial <math> f </math> derajat dua, yang ditentukan oleh
:<math>f(x)=x^2-5x+6</math>
has the two roots <math>2</math> and <math>3</math>, since
:<math>f(2) = 2^2 - 5 \cdot 2 + 6 = 0\quad\textrm{and}\quad f(3) = 3^2 - 5 \cdot 3 + 6 = 0</math>.
 
Jika fungsi memetakan bilangan real ke bilangan real, maka angka nolnya adalah <math> x </math> -kordinat dari titik di mana [[Grafik suatu fungsi | grafik]] memenuhi [[sumbu x | '' x '' - sumbu]]. Nama alternatif untuk titik <math> (x, 0) </math> seperti itu dalam konteks ini adalah intersep <math> x </math>.
 
== Solusi persamaan ==
Setiap [[persamaan]] dalam [[tidak diketahui (matematika) | tidak diketahui]] <math> x </math> dapat ditulis ulang sebagai
 
:<math>f(x)=0</math>
 
dengan mengelompokkan kembali semua suku di sisi kiri. Oleh karena itu, solusi dari persamaan tersebut adalah persis nol dari fungsi <math> f </math>. Dengan kata lain, "nol fungsi" tepatnya adalah "solusi persamaan yang diperoleh dengan menyamakan fungsi dengan 0", dan studi tentang fungsi nol persis sama dengan studi solusi.
 
== Akar polinomial ==
{{main|Sifat dari akar polinom}}
Setiap polinom nyata ganjil [[Derajat polinomial | derajat]] memiliki bilangan ganjil dari akar nyata (menghitung [[Multiplisitas (matematika)#Keragaman dari sebuah akar polinomial | multiplisitas]]); demikian pula, polinomial nyata dengan derajat genap harus memiliki bilangan genap dari akar nyata. Akibatnya, polinomial ganjil nyata harus memiliki setidaknya satu akar nyata (karena bilangan bulat ganjil terkecil adalah 1), sedangkan polinomial genap mungkin tidak memiliki. Prinsip ini dapat dibuktikan dengan mengacu pada [[teorema nilai tengah]]: karena fungsi polinomial adalah [[Fungsi kontinu | kontinu]], nilai fungsi harus melewati nol, dalam proses perubahan dari negatif ke positif atau sebaliknya (yang selalu terjadi untuk fungsi ganjil).
 
=== Teorema dasar aljabar ===
{{main|Teorema dasar aljabar}}
Teorema dasar aljabar menyatakan bahwa setiap polinomial derajat <math> n </math> memiliki <math> n </math> akar kompleks, dihitung dengan kelipatannya. Akar non-nyata dari polinomial dengan koefisien nyata berasal dari pasangan [[konjugasi kompleks | konjugasi]].<ref name="Foerster" /> [[Rumus Vieta]] menghubungkan koefisien polinomial dengan jumlah dan hasil kali akarnya.
 
== Himpunan nol ==
 
Dalam berbagai bidang matematika, '''himpunan nol''' dari sebuah [[fungsi (matematika) | fungsi]] adalah himpunan dari semua nolnya. Lebih tepatnya, jika <math>f:X\to\mathbb{R}</math> adalah [[fungsi bernilai nyata]] (atau, lebih umum, fungsi yang mengambil nilai di beberapa [[grup Abelian | grup aditif]]), himpunan nolnya adalah <math>f^{-1}(0)</math>, [[galeri invers]] dari <math>\{0\}</math> in <math>X</math>.
 
Istilah '' himpunan nol '' umumnya digunakan ketika ada banyak angka nol yang tak terhingga, dan mereka memiliki beberapa [[topologi | sifat topologi]] yang tidak sepele. Misalnya, [[level set]] dari sebuah fungsi <math> f </math> adalah himpunan nol dari <math>f-c</math>. '''Himpunan Cozero''' dari <math> f </math> adalah [[komplemen (teori himpunan) | komplemen]] dari himpunan nol <math> f </math> (mis., bagian dari <math> X </math> di mana <math> f </math> bukan nol).
 
=== Aplikasi ===
Dalam [[geometri aljabar]], definisi pertama dari [[variasi aljabar]] adalah melalui himpunan nol. Secara khusus, sebuah [[set aljabar affine]] adalah [[set intersection | intersection]] dari himpunan nol beberapa polinomial, dalam [[gelanggang polinomial]] <math>k\left[x_1,\ldots,x_n\right]</math> di atas [[bidang (matematika) | bidang]]. Dalam konteks ini, himpunan nol terkadang disebut '' lokus nol ''.
 
Dalam [[Analisis matematika | analisis]] dan [[geometri]], setiap [[himpunan tertutup]] dari <math>\mathbb{R}^n</math> adalah himpunan nol dari [[fungsi mulus]] yang ditentukan di semua <math>\mathbb{R}^n</math>. Ini meluas ke setiap [[lipatan halus]] sebagai akibat wajar dari [[parakompak]]. <!-- Ada tumpang tindih yang jelas antara paragraf ini dan paragraf berikutnya, tetapi dibutuhkan seseorang yang lebih berpengalaman untuk menggabungkan keduanya. -->
 
Dalam [[geometri diferensial]], himpunan nol sering digunakan untuk menentukan [[berjenis]]. Kasus khusus yang penting adalah kasus di mana <math> f </math> adalah [[fungsi mulus]] dari <math>\mathbb{R}^p</math> ke <math>\mathbb{R}^n</math>. Jika nol adalah [[nilai reguler]] dari <math> f </math>, maka himpunan nol dari <math> f </math> adalah banyak dimensi <math>m=p-n</math> by the [[Perendaman (matematika)#Bentuk normal lokal | teorema nilai reguler]].
 
Misalnya, unit <math> m </math> [[bola (matematika)|bola]] pada <math>\mathbb{R}^{m+1}</math> adalah himpunan nol dari fungsi nilai riil <math>f(x)=\Vert x \Vert^2-1</math>.
 
== Lihat pula ==
* [[Teorema Marden]]
* [[Algoritme pencarian root]]
* [[Konjektur Sendov]]
* [[Lenyap tak terbatas]]
* [[Nol persilangan]]
* [[Nol dan kutub]]
 
== Referensi ==