Protein: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
RianHS (bicara | kontrib)
Sejarah dan etimologi: Hasil terjemahan dari en.wp
RianHS (bicara | kontrib)
Sintesis: Hasil terjemahan dari en.wp
Baris 23:
Protein pertama yang [[Pengurutan protein|diurutkan]] adalah [[insulin]], oleh [[Frederick Sanger]], pada tahun 1949. Sanger dengan tepat menentukan urutan asam amino insulin sehingga secara meyakinkan menunjukkan bahwa protein terdiri dari polimer linier asam amino alih-alih rantai bercabang, [[Sistem koloid|koloid]], atau [[siklol]].<ref name="Sanger1949">{{cite journal|year=1949|title=The terminal peptides of insulin|journal=The Biochemical Journal|volume=45|issue=5|pages=563–74|doi=10.1042/bj0450563|pmc=1275055|pmid=15396627|vauthors=Sanger F}}</ref> Ia memenangkan Hadiah Nobel untuk pencapaian ini pada tahun 1958.<ref name="Lecture 1958">{{citation|author=Sanger F.|year=1958|title=Nobel lecture: The chemistry of insulin|publisher=Nobelprize.org|url=http://nobelprize.org/nobel_prizes/chemistry/laureates/1958/sanger-lecture.pdf|access-date=2016-02-09|archive-url=https://www.webcitation.org/6DR99GtT3?url=http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1958/sanger-lecture.pdf|archive-date=2013-01-05|url-status=live}}</ref>
 
[[Struktur protein]] pertama yang diketahhui adalah [[hemoglobin]] dan [[mioglobin]], masing-masing oleh [[Max F. Perutz|Max Perutz]] dan [[John Kendrew|Sir John Cowdery Kendrew]], pada tahun 1958.<ref name="Muirhead1963">{{cite journal|date=August 1963|title=Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 Å resolution|journal=Nature|volume=199|issue=4894|pages=633–38|bibcode=1963Natur.199..633M|doi=10.1038/199633a0|pmid=14074546|vauthors=Muirhead H, Perutz MF|s2cid=4257461}}</ref><ref name="Kendrew1958">{{cite journal|date=March 1958|title=A three-dimensional model of the myoglobin molecule obtained by x-ray analysis|journal=Nature|volume=181|issue=4610|pages=662–66|bibcode=1958Natur.181..662K|doi=10.1038/181662a0|pmid=13517261|vauthors=Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC|s2cid=4162786}}</ref> {{As of|2017}}, [[Protein Data Bank|Bank Data Protein]] memiliki lebih dari 126.060 struktur protein dengan resolusi atomik.<ref name="urlRCSB Protein Data Bank">{{cite web|title=RCSB Protein Data Bank|url=http://www.rcsb.org/pdb/home/home.do|archive-url=https://web.archive.org/web/20150418160606/http://www.rcsb.org/pdb/home/home.do|archive-date=2015-04-18|access-date=2017-01-19|url-status=dead}}</ref> Baru-baru ini, mikroskop krio-elektron dariterhadap [[Perakitan makromolekul|kumpulan makromolekul]] besar<ref name="Zhou2008">{{cite journal|date=April 2008|title=Towards atomic resolution structural determination by single-particle cryo-electron microscopy|journal=Current Opinion in Structural Biology|volume=18|issue=2|pages=218–28|doi=10.1016/j.sbi.2008.03.004|pmc=2714865|pmid=18403197|vauthors=Zhou ZH}}</ref> dan [[prediksi struktur protein]] komputasional terhadap [[Domain struktural|domain]] protein kecil<ref name="Keskin2008">{{cite journal|date=April 2008|title=Characterization and prediction of protein interfaces to infer protein-protein interaction networks|journal=Current Pharmaceutical Biotechnology|volume=9|issue=2|pages=67–76|doi=10.2174/138920108783955191|pmid=18393863|vauthors=Keskin O, Tuncbag N, Gursoy A}}</ref> adalah dua metode yang mendekati resolusi atomik.
 
== Jumlah protein yang disandi dalam genom ==
Baris 44:
 
=== Biosintesis ===
[[Berkas:Ribosome_mRNA_translation_en.svg|pra=https://wiki-indonesia.club/wiki/Berkas:Ribosome_mRNA_translation_en.svg|jmpl|Ribosom menghasilkan protein menggunakan mRNA sebagai templat]]
Biosintesis protein alami sama dengan [[ekspresi genetik]]. [[Kode genetik]] yang dibawa [[DNA]] di[[Transkripsi (genetik)|transkripsi]] menjadi [[RNA]], yang berperan sebagai cetakan bagi [[Translasi (genetik)|translasi]] yang dilakukan [[ribosom]].<ref>Ussery D. 1998. Gene Expression & Regulation. http://www.cbs.dtu.dk/staff/dave/DNA_CenDog.html. Diakses pada 5 Mei 2010</ref> Sampai tahap ini, protein masih "mentah", hanya tersusun dari asam amino proteinogenik. Melalui mekanisme pascatranslasi, terbentuklah protein yang memiliki fungsi penuh secara biologi.<ref>Jolane Abrams. 2010. DNA, RNA, and Protein: Life at its simplest. http://www.postmodern.com/~jka/rnaworld/nfrna/nf-rnadefed.html. Diakses pada 5 Mei 2010.</ref><ref>Crick F. 1970. Central dogma of molecular biology. ''Nature'' 227:561-563.</ref>
[[Berkas:Genetic_code.svg|pra=https://wiki-indonesia.club/wiki/Berkas:Genetic_code.svg|jmpl|Urutan [[Asam deoksiribonukleat|DNA]] dari sebuah gen [[Kodon|menyandi]] urutan asam amino dari sebuah protein]]
Dari makanan kita memperoleh protein. Di sistem pencernaan protein akan diuraikan menjadi [[peptid]] yang strukturnya lebih sederhana terdiri dari asam amino. Hal ini dilakukan dengan bantuan [[enzim]]. Tubuh manusia memerlukan 9 [[asam amino]]. Artinya kesembilan asam amino ini tidak dapat disintesis sendiri oleh tubuh ''esensial'', sedangkan sebagian asam amino dapat disintesis sendiri atau ''tidak esensial'' oleh tubuh. Keseluruhan berjumlah 21 asam amino. Setelah penyerapan di usus maka akan diberikan ke darah. Darah membawa asam amino itu ke setiap sel tubuh. Kode untuk asam amino tidak esensial dapat disintesis oleh [[DNA]]. Ini disebut dengan [[Transkripsi (genetik)|transkripsi]] DNA. Kemudian karena hasil transkripsi di proses lebih lanjut di [[ribosom]] atau [[retikulum endoplasma]], disebut sebagai [[Translasi (genetik)|translasi]].
Protein dirakit dari sejumlah asam amino menggunakan informasi yang disandi dalam gen. Setiap protein memiliki urutan asam amino uniknya sendiri yang ditentukan oleh urutan [[nukleotida]] dari gen yang menyandi protein ini. [[Kodon|Kode genetik]] adalah satu set berupa tiga nukleotida yang disebut [[kodon]] dan setiap kombinasi tiga nukleotida menunjukkan asam amino, misalnya AUG ([[adenina]]–[[urasil]]–[[guanina]]) adalah kode untuk [[Metionina|metionin]]. Karena DNA mengandung empat nukleotida, jumlah total kodon yang mungkin adalah 64; oleh karena itu, terdapat beberapa redundansi dalam kode genetik, dengan beberapa asam amino ditentukan oleh lebih dari satu kodon.<ref name="vanHolde1996">van Holde and Mathews, pp. 1002–42.</ref> Gen yang disandi dalam DNA pertama-tama [[Transkripsi (genetik)|ditranskripsikan]] menjadi pra-[[RNA duta]] (mRNA) oleh protein seperti [[RNA polimerase]]. Kebanyakan organisme kemudian memproses pra-mRNA (juga dikenal sebagai ''transkrip primer'') menggunakan berbagai bentuk [[modifikasi pascatranskripsi]] untuk membentuk mRNA yang matang, yang kemudian digunakan sebagai templat untuk sintesis protein oleh [[ribosom]]. Pada [[prokariota]], mRNA dapat digunakan segera setelah diproduksi atau diikat oleh ribosom setelah menjauh dari [[nukleoid]]. Sebaliknya, [[eukariota]] membuat mRNA di [[inti sel]] dan kemudian [[Translokasi protein|mentranslokasikannya]] melewati [[membran inti]] ke dalam [[sitoplasma]], tempat [[sintesis protein]] kemudian terjadi. Tingkat sintesis protein pada prokariota lebih tinggi daripada eukariota dan dapat mencapai hingga 20 asam amino per detik.<ref name="Pain2000">{{cite book|vauthors=Dobson CM|year=2000|title=Mechanisms of Protein Folding|location=Oxford, Oxfordshire|publisher=Oxford University Press|isbn=978-0-19-963789-8|veditors=Pain RH|pages=1–28|chapter=The nature and significance of protein folding}}</ref>
 
Proses sintesis protein dari cetakan mRNA dikenal sebagai [[Translasi (genetik)|translasi]]. Selanjutnya, mRNA dimuat ke ribosom dan dibaca tiga nukleotida sekaligus dengan mencocokkan setiap kodon dengan [[RNA transfer|antikodon]] [[pasangan basa]] yang terletak pada molekul [[RNA transfer]] (tRNA), yang membawa asam amino yang sesuai dengan kodon yang dikenalinya. Enzim [[sintetase tRNA-aminoasil]] "mengisi" molekul tRNA dengan asam amino yang benar. Polipeptida yang sedang terbentuk sering disebut ''rantai yang baru lahir''. Protein selalu disintesis dari [[N-terminus]] ke [[C-terminus]].<ref name="vanHolde1996" />
 
Ukuran protein yang disintesis dapat diukur dengan jumlah asam amino yang dikandungnya dan dengan total [[Massa molekul relatif|massa molekulnya]], yang biasanya dilaporkan dalam satuan ''dalton'' (identik dengan [[Dalton (satuan)|satuan massa atom]]), atau satuan turunan kilodalton (kDa). Ukuran rata-rata protein makin meningkat dari arkea, bakteri, dan eukariota (masing-masing 283, 311, 438 residu amino dan 31, 34, 49 kDa) karena lebih banyak [[domain protein]] yang menyusun protein dalam organisme yang lebih tinggi.<ref name="Kozlowski2016">{{Cite journal|date=January 2017|title=Proteome-pI: proteome isoelectric point database|journal=Nucleic Acids Research|volume=45|issue=D1|pages=D1112–D1116|doi=10.1093/nar/gkw978|pmc=5210655|pmid=27789699|vauthors=Kozlowski LP}}</ref> Misalnya protein [[khamir]] rata-rata memiliki panjang 466 asam amino dan massa 53 kDa. Protein terbesar yang diketahui adalah [[titin]], komponen dari [[Sarcomere|sarkomer]] [[otot]], dengan massa molekul hampir 3.000 kDa dan panjang total hampir 27.000 asam amino.<ref name="Fulton1991">{{cite journal|date=April 1991|title=Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis|journal=BioEssays|volume=13|issue=4|pages=157–61|doi=10.1002/bies.950130403|pmid=1859393|vauthors=Fulton AB, Isaacs WB|s2cid=20237314}}</ref>
 
=== Sintesis kimia ===