Protein: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
RianHS (bicara | kontrib)
Proteomika: Hasil terjemahan dari en.wp
RianHS (bicara | kontrib)
Bioinformatika: Hasil terjemahan dari en.wp
Baris 141:
{{Main|Bioinformatika}}
Berbagai macam metode komputasi telah dikembangkan untuk menganalisis struktur, fungsi, dan evolusi protein. Perkembangan metode-metode tersebut didorong oleh sejumlah besar data genomik dan proteomik yang tersedia untuk berbagai organisme, termasuk [[genom manusia]]. Tidak mungkin mempelajari semua protein secara eksperimental sehingga hanya sedikit protein yang menjadi sasaran eksperimen laboratorium. Sementara itu, alat komputasi digunakan untuk mengekstrapolasi ke protein yang serupa. [[Homologi urutan|Protein homolog]] dapat diidentifikasi secara efisien pada organisme yang berkerabat jauh melalui [[Pensejajaran Sekuens|penjajaran urutan]]. Urutan-urutan genom dan gen dapat dicari dengan berbagai alat untuk properti tertentu. [[Alat pembuat profil urutan]] dapat menemukan situs [[enzim restriksi]], [[rangka baca terbuka]] dalam urutan [[nukleotida]], dan memprediksi struktur sekunder protein. [[Pohon filogenetika]] dapat dibuat dan hipotesis [[evolusi]] dikembangkan menggunakan perangkat lunak khusus seperti [[ClustalW]] untuk mengetahui nenek moyang organisme modern dan gen yang mereka ekspresikan. Bidang [[bioinformatika]] sangat diperlukan untuk analisis gen dan protein.
 
=== Penentuan struktur ===
Penemuan struktur tersier dari suatu protein, atau struktur kuaterner dari kompleks protein, dapat memberikan petunjuk penting tentang bagaimana protein tersebut menjalankan fungsinya dan bagaimana fungsi ini dapat dipengaruhi, misalnya dalam [[Desain obat|mendesain obat]]. Karena protein [[Sistem terbatas difraksi|terlalu kecil untuk dilihat]] di bawah [[mikroskop cahaya]], metode lain harus digunakan untuk menentukan strukturnya. Metode eksperimental yang umum meliputi [[kristalografi sinar-X]] dan [[Protein NMR|spektroskopi NMR]], keduanya dapat menghasilkan informasi struktural pada resolusi [[Atom|atomik]]. Eksperimen NMR mampu memberikan informasi dari mana subset jarak di antara pasangan atom dapat diperkirakan, dan kemungkinan konformasi akhir sebuah protein ditentukan dengan memecahkan masalah [[geometri jarak]]. [[Interferometri polarisasi ganda]] adalah metode analitik kuantitatif untuk mengukur [[Struktur protein|konformasi protein]] secara keseluruhan dan [[Perubahan konformasional|perubahan konformasi]] akibat interaksi atau rangsangan lainnya. Dikroisme sirkuler adalah teknik laboratorium lain untuk menentukan komposisi untiran-alfa atau lembaran-beta internal dari protein. [[Mikroskopi cryoelectron|Mikroskop krioelektron]] digunakan untuk menghasilkan informasi struktural beresolusi rendah tentang kompleks protein yang sangat besar, termasuk [[virus]] yang telah dirakit;<ref>Branden and Tooze, pp. 340–41.</ref> varian yang dikenal sebagai [[kristalografi elektron]] juga dapat menghasilkan informasi resolusi tinggi dalam beberapa kasus, terutama untuk kristal protein membran dua dimensi.<ref name="Gonen2005">{{cite journal|date=December 2005|title=Lipid-protein interactions in double-layered two-dimensional AQP0 crystals|journal=Nature|volume=438|issue=7068|pages=633–38|bibcode=2005Natur.438..633G|doi=10.1038/nature04321|pmc=1350984|pmid=16319884|vauthors=Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison SC, Walz T}}</ref> Struktur yang diselesaikan biasanya disimpan di [[Protein Data Bank|Bank Data Protein]] (PDB), sumber daya yang tersedia secara bebas mengenai data struktural dari ribuan protein yang dapat diperoleh dalam bentuk [[Sistem koordinat Kartesius|koordinat Cartesian]] untuk setiap atom dalam protein.<ref name="Standley2008">{{cite journal|date=July 2008|title=Protein structure databases with new web services for structural biology and biomedical research|url=http://bib.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18430752|journal=Briefings in Bioinformatics|volume=9|issue=4|pages=276–85|doi=10.1093/bib/bbn015|pmid=18430752|archive-url=https://archive.is/20130415144412/http://bib.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=18430752|archive-date=2013-04-15|access-date=2009-04-13|vauthors=Standley DM, Kinjo AR, Kinoshita K, Nakamura H|url-status=live|doi-access=free}}</ref>
 
Urutan gen lebih banyak diketahui dibandingkan struktur protein. Lebih jauh, himpunan struktur protein yang terselesaikan cenderung bias terhadap protein yang dapat dengan mudah mengalami kondisi yang diperlukan untuk [[kristalografi sinar-X]], salah satu metode utama penentuan struktur protein. Secara khusus, protein globular secara komparatif mudah untuk [[Kristalisasi|mengkristal]] sebagai persiapan untuk kristalografi sinar-X. Sebaliknya, protein membran dan kompleks protein besar sulit untuk dikristalisasi dan kurang terwakili dalam PDB.<ref name="Walian2004">{{cite journal|year=2004|title=Structural genomics of membrane proteins|journal=Genome Biology|volume=5|issue=4|pages=215|doi=10.1186/gb-2004-5-4-215|pmc=395774|pmid=15059248|vauthors=Walian P, Cross TA, Jap BK}}</ref> [[Genomik struktural|Genomika struktural]] telah berusaha untuk memperbaiki kekurangan ini dengan secara sistematis memecahkan struktur perwakilan dari kelas-kelas lipatan utama. Metode [[prediksi struktur protein]] mencoba mencari cara untuk menghasilkan struktur yang masuk akal untuk protein yang strukturnya belum ditentukan secara eksperimental.<ref name="Sleator2012">{{Cite book|vauthors=Sleator RD|year=2012|title=Functional Genomics|isbn=978-1-61779-423-0|series=Methods in Molecular Biology|volume=815|pages=15–24|chapter=Prediction of protein functions|doi=10.1007/978-1-61779-424-7_2|pmid=22130980}}</ref>
 
== Nutrisi ==