Protein: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
→Bioinformatika: Hasil terjemahan dari en.wp |
→Penentuan struktur: Hasil terjemahan dari en.wp |
||
Baris 146:
Urutan gen lebih banyak diketahui dibandingkan struktur protein. Lebih jauh, himpunan struktur protein yang terselesaikan cenderung bias terhadap protein yang dapat dengan mudah mengalami kondisi yang diperlukan untuk [[kristalografi sinar-X]], salah satu metode utama penentuan struktur protein. Secara khusus, protein globular secara komparatif mudah untuk [[Kristalisasi|mengkristal]] sebagai persiapan untuk kristalografi sinar-X. Sebaliknya, protein membran dan kompleks protein besar sulit untuk dikristalisasi dan kurang terwakili dalam PDB.<ref name="Walian2004">{{cite journal|year=2004|title=Structural genomics of membrane proteins|journal=Genome Biology|volume=5|issue=4|pages=215|doi=10.1186/gb-2004-5-4-215|pmc=395774|pmid=15059248|vauthors=Walian P, Cross TA, Jap BK}}</ref> [[Genomik struktural|Genomika struktural]] telah berusaha untuk memperbaiki kekurangan ini dengan secara sistematis memecahkan struktur perwakilan dari kelas-kelas lipatan utama. Metode [[prediksi struktur protein]] mencoba mencari cara untuk menghasilkan struktur yang masuk akal untuk protein yang strukturnya belum ditentukan secara eksperimental.<ref name="Sleator2012">{{Cite book|vauthors=Sleator RD|year=2012|title=Functional Genomics|isbn=978-1-61779-423-0|series=Methods in Molecular Biology|volume=815|pages=15–24|chapter=Prediction of protein functions|doi=10.1007/978-1-61779-424-7_2|pmid=22130980}}</ref>
=== Prediksi dan simulasi struktur ===
[[Berkas:225_Peptide_Bond-01.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:225_Peptide_Bond-01.jpg|ka|jmpl|Asam amino-asam amino penyusun dapat dianalisis untuk memprediksi struktur protein sekunder, tersier, dan kuaterner, dalam hal ini hemoglobin yang mengandung unit [[heme]].]]
Untuk melengkapi bidang genomika struktural, ''prediksi struktur protein'' mengembangkan [[model matematika]] protein yang efisien untuk memprediksi formasi molekul secara komputasi dalam teori, alih-alih mendeteksi struktur dengan observasi laboratorium.<ref name="Zhang2008">{{cite journal|date=June 2008|title=Progress and challenges in protein structure prediction|journal=Current Opinion in Structural Biology|volume=18|issue=3|pages=342–48|doi=10.1016/j.sbi.2008.02.004|pmc=2680823|pmid=18436442|vauthors=Zhang Y}}</ref> Jenis prediksi struktur yang paling berhasil, yang dikenal sebagai [[pemodelan homologi]], bergantung pada keberadaan struktur "templat" dengan kemiripan urutan terhadap protein yang dimodelkan; tujuan genomika struktural adalah memberikan representasi yang memadai dari struktur yang terselesaikan untuk memodelkan sebagian besar struktur yang tersisa.<ref name="Xiang2006">{{cite journal|date=June 2006|title=Advances in homology protein structure modeling|journal=Current Protein & Peptide Science|volume=7|issue=3|pages=217–27|doi=10.2174/138920306777452312|pmc=1839925|pmid=16787261|vauthors=Xiang Z}}</ref> Meskipun menghasilkan model yang akurat tetap menjadi tantangan ketika yang tersedia hanyalah struktur templat yang berkaitan jauh, disimpulkan bahwa [[Pensejajaran Sekuens|penyelarasan urutan]] adalah penghambat dalam proses ini karena model yang cukup akurat dapat dihasilkan jika penyelarasan urutan yang "sempurna" diketahui.<ref name="Zhang2005">{{cite journal|date=January 2005|title=The protein structure prediction problem could be solved using the current PDB library|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=102|issue=4|pages=1029–34|bibcode=2005PNAS..102.1029Z|doi=10.1073/pnas.0407152101|pmc=545829|pmid=15653774|vauthors=Zhang Y, Skolnick J}}</ref> Banyak metode prediksi struktur telah menyediakan informasi bagi bidang [[rekayasa protein]], yang baru-baru ini muncul, ketika lipatan protein yang baru telah dirancang.<ref name="Kuhlman2003">{{cite journal|date=November 2003|title=Design of a novel globular protein fold with atomic-level accuracy|journal=Science|volume=302|issue=5649|pages=1364–68|bibcode=2003Sci...302.1364K|doi=10.1126/science.1089427|pmid=14631033|vauthors=Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D|s2cid=1939390}}</ref> Masalah komputasi yang lebih kompleks yaitu prediksi interaksi antarmolekul, seperti dalam [[Docking (molekuler)|perkaitan molekuler]] dan [[prediksi interaksi protein-protein]].<ref name="Ritchie2008">{{cite journal|date=February 2008|title=Recent progress and future directions in protein-protein docking|journal=Current Protein & Peptide Science|volume=9|issue=1|pages=1–15|doi=10.2174/138920308783565741|pmid=18336319|vauthors=Ritchie DW|citeseerx=10.1.1.211.4946}}</ref>
Model matematika untuk mensimulasikan proses dinamis dari [[Pelipatan protein|pelipatan]] dan pengikatan [[Pelipatan protein|protein]] melibatkan [[Mekanika molekul|mekanika molekuler]], khususnya [[dinamika molekuler]]. Teknik [[Metode Monte Carlo|Monte Carlo]] memfasilitasi komputasi, yang memanfaatkan kemajuan dalam komputasi paralel dan [[Komputasi terdistribusi|terdistribusi]] (misalnya proyek [[Lipat @ rumah|Folding@home]]<ref name="Scheraga2007">{{cite journal|year=2007|title=Protein-folding dynamics: overview of molecular simulation techniques|journal=Annual Review of Physical Chemistry|volume=58|pages=57–83|bibcode=2007ARPC...58...57S|doi=10.1146/annurev.physchem.58.032806.104614|pmid=17034338|vauthors=Scheraga HA, Khalili M, Liwo A}}</ref> yang melakukan [[Pemodelan molekuler di GPU|pemodelan molekuler]] pada [[Unit pemroses grafis|GPU]]). Simulasi ''[[in silico]]'' menemukan lipatan [[domain protein]] uliran-alfa yang kecil seperti bagian-kepala protein [[vilin]]<ref name="Zagrovic2002">{{cite journal|date=November 2002|title=Simulation of folding of a small alpha-helical protein in atomistic detail using worldwide-distributed computing|journal=Journal of Molecular Biology|volume=323|issue=5|pages=927–37|doi=10.1016/S0022-2836(02)00997-X|pmid=12417204|vauthors=Zagrovic B, Snow CD, Shirts MR, Pande VS|citeseerx=10.1.1.142.8664}}</ref> dan protein aksesori [[HIV]].<ref name="Herges2005">{{cite journal|date=January 2005|title=In silico folding of a three helix protein and characterization of its free-energy landscape in an all-atom force field|journal=Physical Review Letters|volume=94|issue=1|pages=018101|arxiv=physics/0310146|bibcode=2005PhRvL..94a8101H|doi=10.1103/PhysRevLett.94.018101|pmid=15698135|vauthors=Herges T, Wenzel W|s2cid=1477100}}</ref> Metode hibrida yang menggabungkan dinamika molekul standar dengan matematika [[mekanika kuantum]] telah menjelajahi keadaan elektronik [[rhodopsin]].<ref name="Hoffman2006">{{cite journal|date=August 2006|title=Color tuning in rhodopsins: the mechanism for the spectral shift between bacteriorhodopsin and sensory rhodopsin II|journal=Journal of the American Chemical Society|volume=128|issue=33|pages=10808–18|doi=10.1021/ja062082i|pmid=16910676|vauthors=Hoffmann M, Wanko M, Strodel P, König PH, Frauenheim T, Schulten K, Thiel W, Tajkhorshid E, Elstner M}}</ref>
== Nutrisi ==
|