Gelanggang (matematika): Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k Bot: Perubahan kosmetika |
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan |
||
Baris 7:
Konseptualisasi gelanggang dimulai pada 1870-an dan diselesaikan pada 1920-an. Kontributor utama di antaranya [[Richard Dedekind|Dedekind]], [[David Hilbert|Hilbert]], [[Abraham Fraenkel|Fraenkel]], dan [[Emmy Noether|Noether]]. Gelanggang pertama kali dirumuskan sebagai bentuk umum dari [[domain Dedekind]] yang terdapat di [[teori bilangan]], dan dari [[gelanggang polinomial]] dan gelanggang invarian yang terdapat di [[geometri aljabar]] dan [[teori invarian]]. Selanjutnya, gelanggang dipergunakan di cabang-cabang matematika yang lain seperti [[geometri]] dan [[analisis matematis]].
== Definisi
[[Berkas:Number-line.svg|alt=|jmpl|410x410px|[[Bilangan bulat]], dengan operasi [[penjumlahan]] dan [[perkalian]], membentuk contoh prototipikal dari gelanggang.]]
Baris 16:
Sifat-sifat penjumlahan dan perkalian bilangan bulat merupakan model untuk aksioma-aksioma gelanggang.
=== Definisi utama ===
Sebuah '''gelanggang''' adalah sebuah [[Himpunan (matematika)|himpunan]] ''R'' dengan dua [[operasi biner]] + dan '''·''' yang memenuhi ketiga aksioma berikut, juga disebut '''aksioma gelanggang'''<ref>{{cite book|author=Nicolas Bourbaki|title=Algebra|publisher=Springer-Verlag|section=§I.8|year=1970}}</ref><ref>{{cite book|title=Algebra|author1=Saunders MacLane|author2=Garrett Birkhoff|publisher=AMS Chelsea|page=85|year=1967|author1-link=Saunders MacLane}}</ref><ref>{{cite book|author=Serge Lang|title=Algebra|publisher=Springer-Verlag|page=83|year=2002|edition=Third|author-link=Serge Lang}}</ref>
Baris 40:
Dalam sebuah gelanggang, invers perkalian tidak harus ada. Sebuah gelanggang bukan [[gelanggang nol|nol]] yang setiap unsur bukan nolnya memiliki [[invers perkalian]] disebut sebuah [[medan (matematika)|medan]].
Beberapa sifat dasar dari gelanggang yang bisa diperoleh dari aksioma:
* Identitas aditif, invers aditif setiap unsur, dan identitas perkalian bersifat unik.
Baris 47:
* [[Teorema binomial]] berlaku untuk setiap pasangan unsur yang komutatif (dengan kata lain, untuk setiap ''x'' dan ''y'' yang memenuhi ''xy'' = ''yx'').
== Contoh ==
=== Contoh: Bilangan bulat modulo 4 ===
{{see also| Aritmetika modular}}
|