Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20210209)) #IABot (v2.0.8) (GreenC bot
InternetArchiveBot (bicara | kontrib)
Rescuing 37 sources and tagging 2 as dead.) #IABot (v2.0.8
Baris 13:
== Pembentukan ==
=== Udara lembap ===
Udara berisikan uap air dan sejumlah air dalam massa udara kering, disebut Rasio Pencampuran, diukur dalam satuan gram air per kilogram udara kering (g/kg).<ref>{{cite web|author=Steve Kempler|year=2009|url=http://daac.gsfc.nasa.gov/PIP/shtml/atmospheric_water_vapor_or_humidity.shtml|title=Parameter information page|publisher=[[NASA]] [[Goddard Space Flight Center]]|accessdate=2008-12-27 |archiveurl = httphttps://web.archive.org/web/20071126083414/http://daac.gsfc.nasa.gov/PIP/shtml/atmospheric_water_vapor_or_humidity.shtml |archivedate = November 2007-11-26, 2007|dead-url=yes}}</ref><ref>{{cite book|url=http://www.atmos.washington.edu/~stoeling/WH-Ch03.pdf|page=80|accessdate=2010-01-30|date=2005-09-12|author=Mark Stoelinga|title=Atmospheric Thermodynamics|publisher=[[University of Washington]]|archiveurl=httphttps://web.archive.org/web/20100602004341/http://www.atmos.washington.edu/~stoeling/WH-Ch03.pdf|archivedate=2010-06-02|dead-url=yes}}</ref> Jumlah kelembapan di udara juga disebut sebagai [[kelembapan relatif]]; yaitu persentase total udara uap air yang dapat bertahan pada suhu udara tertentu.<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=relative+humidity&submit=Search|author=Glossary of Meteorology|date=June 2000|accessdate=2010-01-29|publisher=[[American Meteorological Society]]|title=Relative Humidity|archive-date=2011-07-07|archive-url=https://web.archive.org/web/20110707113357/http://amsglossary.allenpress.com/glossary/search?p=1&query=relative+humidity&submit=Search|dead-url=yes}}</ref> Jumlah uap air yang dapat ditahan udara sebelum melembap (100% kelembapan relatif) dan membentuk [[awan]] (sekumpulan air kecil dan tampak dan partikel es yang tertahan di atas permukaan Bumi)<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?id=cloud1|author=Glossary of Meteorology|date=June 2000|accessdate=2010-01-29|publisher=[[American Meteorological Society]]|title=Cloud|archive-date=2012-04-19|archive-url=https://web.archive.org/web/20120419025154/http://amsglossary.allenpress.com/glossary/search?id=cloud1|dead-url=yes}}</ref> bergantung pada suhunya. Udara yang lebih panas memiliki lebih banyak uap air daripada udara dingin sebelum melembap. Karena itu, satu-satunya cara untuk melembapkan udara adalah dengan mendinginkannya. [[Titik embun]] adalah suhu yang dicapai dalam pendinginan udara untuk melembapkan udara tersebut.<ref>{{cite web|author=Naval Meteorology and Oceanography Command|year=2007|url=http://www.navmetoccom.navy.mil/pao/Educate/WeatherTalk2/indexatmosp.htm|title=Atmospheric Moisture|publisher=[[United States Navy]]|accessdate=2008-12-27}} {{Dead link|archive-date=September 20102009-04-15|botarchive-url=https://web.archive.org/web/20090415223327/http://www.navmetoccom.navy.mil/pao/Educate/WeatherTalk2/indexatmosp.htm|dead-url=H3llBotyes}}</ref>
 
Ada empat mekanisme utama dalam pendinginan udara hingga titik embunnya: pendinginan adiabatik, pendinginan konduktif, pendinginan radiasional, dan pendinginan evaporatif. [[Waktu selang adiabatik#Waktu selang adiabatik kering|Pendinginan adiabatik]] terjadi ketika udara naik dan menyebar.<ref>{{cite web|author=Glossary of Meteorology|year=2009|url=http://amsglossary.allenpress.com/glossary/search?id=adiabatic-process1|title=Adiabatic Process|publisher=[[American Meteorological Society]]|accessdate=2008-12-27|archive-date=2012-02-18|archive-url=https://web.archive.org/web/20120218101106/http://amsglossary.allenpress.com/glossary/search?id=adiabatic-process1|dead-url=yes}}</ref> Udara dapat naik karena [[konveksi]], gerakan atmosfer berskala besar, atau perintang fisik seperti pegunungan ([[pengangkatan orografis]]). Pendinginan konduktif terjadi ketika udara bertemu permukaan yang lebih dingin,<ref>{{cite web|author=TE Technology, Inc|year=2009|url=http://www.tetech.com/Cold-Plate-Coolers.html|title=Peltier Cold Plate|accessdate=2008-12-27}}</ref> biasanya tertiup dari satu permukaan ke permukaan lain, misalnya dari permukaan air ke daratan yang lebih dingin. Pendinginan radiasional terjadi karena emisi [[radiasi panas|radiasi inframerah]] yang muncul akibat udara ataupun permukaan di bawahnya.<ref>{{cite web|author=Glossary of Meteorology|year=2009|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=radiational+cooling&submit=Search|title=Radiational cooling|publisher=[[American Meteorological Society]]|accessdate=2008-12-27|archive-date=2011-05-12|archive-url=https://web.archive.org/web/20110512161339/http://amsglossary.allenpress.com/glossary/search?p=1&query=radiational+cooling&submit=Search|dead-url=yes}}</ref> Pendinginan evaporatif terjadi ketika kelembapan masuk dalam udara melalui penguapan, sehingga memaksa suhu udara mendingin hingga [[suhu bulb basah]], atau mencapai titik kelembapan.<ref>{{cite web|author=Robert Fovell|year=2004|url=http://www.atmos.ucla.edu/~fovell/AS3downloads/saturation.pdf|title=Approaches to saturation|publisher=[[UCLA|University of California in Los Angelese]]|accessdate=2009-02-07|archive-date=2009-02-25|archive-url=https://web.archive.org/web/20090225074155/http://www.atmos.ucla.edu/~fovell/AS3downloads/saturation.pdf|dead-url=yes}}</ref>
 
Cara utama uap air dapat bergabung dengan udara adalah ketika angin berkonvergensi ke wilayah gerakan ke atas,<ref name="convection">{{cite book|author=Robert Penrose Pearce|year=2002|url=http://books.google.com/?id=QECy_UBdyrcC&pg=PA66&lpg=PA66&dq=ways+to+moisten+the+atmosphere|title=Meteorology at the Millennium|publisher=Academic Press|page=66|isbn=978-0-12-548035-2|accessdate=2009-01-02}}</ref> presipitasi atau virga yang jatuh dari atas,<ref>{{cite web|author=[[National Weather Service]] Office, Spokane, Washington|year=2009|url=http://www.wrh.noaa.gov/otx/outreach/ttalk/virga.php|title=Virga and Dry Thunderstorms|accessdate=2009-01-02}}</ref> pemanasan siang hari yang menguapkan air dari permukaan laut, badan air atau tanah basah,<ref>{{cite web|author=Bart van den Hurk and Eleanor Blyth|year=2008|url=http://www.knmi.nl/~hurkvd/Loco_workshop/Workshop_report.pdf|title=Global maps of Local Land-Atmosphere coupling|publisher=KNMI|accessdate=2009-01-02}}</ref> transpirasi tumbuhan,<ref>{{cite web|author=Krishna Ramanujan and Brad Bohlander|year=2002|url=http://www.gsfc.nasa.gov/topstory/20020926landcover.html|title=Landcover changes may rival greenhouse gases as cause of climate change|publisher=[[National Aeronautics and Space Administration]] [[Goddard Space Flight Center]]|accessdate=2009-01-02 |archiveurl = httphttps://web.archive.org/web/20080603022239/http://www.gsfc.nasa.gov/topstory/20020926landcover.html |archivedate = June 3, 2008-06-03|dead-url=yes}}</ref> udara dingin atau kering yang bergerak di perairan panascool or dry air moving over warmer water,<ref>{{cite web|author=[[National Weather Service]] JetStream|year=2008|url=http://www.srh.weather.gov/srh/jetstream/synoptic/airmass.htm|title=Air Masses|accessdate=2009-01-02|archive-date=2015-10-17|archive-url=https://web.archive.org/web/20151017061116/http://www.srh.weather.gov/srh/jetstream/synoptic/airmass.htm|dead-url=yes}}</ref> dan udara yang naik di pegunungan.<ref name="MT">{{cite web|author=Dr. Michael Pidwirny|year=2008|url=http://www.physicalgeography.net/fundamentals/8e.html|title=CHAPTER 8: Introduction to the Hydrosphere (e). Cloud Formation Processes|publisher=Physical Geography|accessdate=2009-01-01}}</ref> Uap air biasanya mulai mengembun di [[nuklei kondensasi awan|nuklei kondensasi]] seperti debu, es, dan garam untuk membentuk awan. Bagian-bagian tinggi front cuaca (tiga dimensi)<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?id=front1|author=Glossary of Meteorology|date=June 2000|accessdate=2010-01-29|publisher=[[American Meteorological Society]]|title=Front}}</ref> memaksa wilayah luas melakukan gerakan ke atas di atmosfer Bumi sehingga membentuk dek awan seperti [[altostratus]] atau [[sirostratus]].<ref name="DR">{{cite web|author=David Roth|title=Unified Surface Analysis Manual|year=|accessdate=2006-10-22|publisher=[[Hydrometeorological Prediction Center]]|url= http://www.hpc.ncep.noaa.gov/sfc/UASfcManualVersion1.pdf}}</ref> [[Awan stratus|Stratus]] adalah dek awan stabil yang terbentuk ketika udara dingin dan stabil terperangkap di bawah massa udara panas. Awan ini juga dapat terbentuk akibat pengangkatan [[kabut#Jenis|kabut adveksi]] ketika kondisi berangin.<ref>{{cite web|author=FMI|year=2007|url=http://www.zamg.ac.at/docu/Manual/SatManu/main.htm?/docu/Manual/SatManu/CMs/FgStr/backgr.htm|title=Fog And Stratus - Meteorological Physical Background|publisher=Zentralanstalt für Meteorologie und Geodynamik|accessdate=2009-02-07}}</ref>
 
=== Koalesensi ===
[[Berkas:Raindrops sizes.svg|alt=Diagram memperlihatkan bahwa butir hujan terkecil berbentuk hampir bulat. Ketika butir semakin besar, bentuknya semakin pepat di bawah seperti roti hamburger. Butir hujan terbesar terpisah menjadi butir-butir kecil karena resistensi air yang membuatnya semakin tidak stabil.|jmpl|250px|Bentuk butir hujan menurut ukurannya]]
[[Koalesensi (meteorologi)|Koalesensi]] terjadi ketika butir air bergabung membentuk butir air yang lebih besar, atau ketika butir air membeku menjadi kristal es yang dikenal sebagai [[proses Bergeron]]. Resistensi udara mengakibatkan butiran air mengambang di awan. Ketika turbulensi udara terjadi, butiran air bertabrakan dan menghasilkan butiran yang lebih besar. Butiran air besar ini turun dan koalesensi terus berlanjut, sehingga butiran menjadi cukup berat untuk melawan resistensi udara dan jatuh sebagai hujan. Koalesensi umumnya sering terjadi di awan atas titik beku dan dikenal sebagai proses hujan hangat.<ref>{{cite web|author=Glossary of Meteorology|date=June 2000|url=http://amsglossary.allenpress.com/glossary/search?id=warm-rain-process1|title=Warm Rain Process|accessdate=2010-01-15|publisher=[[American Meteorological Society]]|archive-date=2012-12-09|archive-url=https://web.archive.org/web/20121209205815/http://amsglossary.allenpress.com/glossary/search?id=warm-rain-process1|dead-url=yes}}</ref> Di awan bawah titik beku, kristal es mulai jatuh ketika memiliki massa yang cukup. Umumnya, kristal membutuhkan massa yang lebih besar daripada koalesensi yang terjadi antara kristal dan butiran air sekitarnya. Proses ini bergantung kepada suhu, karena butiran air superdingin hanya ada di awan bawah titik beku. Selain itu, karena perbedaan suhu yang besar antara awan dan permukaan, kristal-kristal es ini bisa mencair ketika jatuh dan menjadi hujan.<ref>{{cite web|author=Paul Sirvatka|year=2003|url=http://weather.cod.edu/sirvatka/bergeron.html|title=Cloud Physics: Collision/Coalescence; The Bergeron Process|publisher=[[College of DuPage]]|accessdate=2009-01-01}}</ref>
 
Butiran hujan memiliki beragam ukuran mulai dari diameter rata-rata {{convert|0,1|mm|in}} hingga {{convert|9|mm|in}}, di atas itu butiran akan terpisah-pisah. Butiran kecil disebut butiran awan dan berbentuk bola. Butiran hujan besar semakin pepat di bawah seperti roti [[hamburger]], butiran terbesar berbentuk mirip [[parasut]].<ref>{{cite web |title = Bad Meteorology: Raindrops are shaped like teardrops. |url = http://www.ems.psu.edu/~fraser/Bad/BadRain.html |author = Alistair B. Fraser |accessdate = 2008-04-07|date=2003-01-15|publisher=[[Pennsylvania State University]]}}</ref> Berbeda dengan kepercayaan masyarakat, bentuk butir hujan yang asli justru tidak mirip air mata.<ref>{{cite web|author=[[United States Geological Survey]]|year=2009|url=http://ga.water.usgs.gov/edu/raindropshape.html|title=Are raindrops tear shaped?|publisher=[[United States Department of the Interior]]|accessdate=2008-12-27}}</ref> Butiran hujan terbesar di Bumi tercatat di [[Brasil]] dan [[Kepulauan Marshall]] pada tahun 2004—beberapa di antaranya sebesar {{convert|10|mm|in}}. Ukuran besar ini disebabkan oleh pengembunan partikel [[asap]] besar atau tabrakan antara sekelompok kecil butiran dengan air tawar yang banyak.<ref>{{cite news|title=Monster raindrops delight experts|url=http://news.bbc.co.uk/2/hi/science/nature/3898305.stm|author=Paul Rincon|publisher=[[British Broadcasting Company]]|date=2004-07-16|accessdate=2009-11-30}}</ref>
 
Intensitas dan durasi hujan biasanya berkaitan terbalik yang berarti badai intensitas tinggi memiliki durasi pendek dan badai intensitas rendah memiliki durasi panjang.<ref>{{cite web|author=J . S. 0guntoyinbo and F. 0. Akintola|year=1983|url=http://www.cig.ensmp.fr/~iahs/redbooks/a140/iahs_140_0063.pdf|title=Rainstorm characteristics affecting water availability for agriculture|publisher=IAHS Publication Number 140|accessdate=2008-12-27|archive-date=2009-02-05|archive-url=https://web.archive.org/web/20090205200119/http://www.cig.ensmp.fr/~iahs/redbooks/a140/iahs_140_0063.pdf|dead-url=yes}}</ref><ref>{{cite journal|author=Robert A. Houze Jr|url=http://ams.allenpress.com/archive/1520-0477/78/10/pdf/i1520-0477-78-10-2179.pdf|title=Stratiform Precipitation in Regions of Convection: A Meteorological Paradox?|journal=Bulletin of the [[American Meteorological Society]]|date=October 1997|volume=78|pages=2179–2196|accessdate=2008-12-27|issue=10|doi=10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2|issn=1520-0477|year=1997}} {{Dead link|date=September 2010|bot=H3llBot}}</ref> Butir hujan pada hujan es cair cenderung lebih besar daripada butiran hujan lain.<ref>{{cite web|author=Norman W. Junker|year=2008|url=http://www.hpc.ncep.noaa.gov/research/mcs_web_test_test_files/Page882.htm|title=An ingredients based methodology for forecasting precipitation associated with MCS’s|publisher=[[Hydrometeorological Prediction Center]]|accessdate=2009-02-07}}</ref> Butir hujan jatuh pada [[kecepatan terminal]]nya, lebih besar untuk butiran besar karena massanya yang lebih besar terhadap rasio tarikan. Di permukaan laut tanpa angin, [[gerimis]] {{convert|0,5|mm|in}} jatuh dengan kecepatan {{convert|2|m/s|mph}}, sementara butiran besar {{convert|5|mm|in}} jatuh pada kecepatan {{convert|9|m/s|mph}}.<ref>{{cite web |title = Falling raindrops hit 5 to 20 mph speeds |url = http://www.wonderquest.com/falling-raindrops.htm |publisher = Weather Quest |accessdate = 2008-04-08
}}</ref> [[Butir air#Suara|Suara butir hujan]] menabrak air disebabkan oleh gelembung air berosilasi di bawah air.<ref>{{cite journal
| author = Andrea Prosperetti and Hasan N. Oguz
Baris 39:
| accessdate = 2006-12-09
| bibcode=1993AnRFM..25..577P
}}</ref><ref>{{cite web |url=http://ffden-2.phys.uaf.edu/311_fall2004.web.dir/Ryan_Rankin/bubble%20resonance.htm |title=Bubble Resonance |accessdate=2006-12-09 |author=Ryan C. Rankin |year=2005 |month=June |work=The Physics of Bubbles, Antibubbles, and all That}}</ref> Kode [[METAR]] untuk hujan adalah RA, sementara kode untuk hujan deras adalah SHRA.<ref name="METAR">{{cite web|url=http://www.alaska.faa.gov/fai/afss/metar%20taf/sametara.htm|title=SA-METAR|author=Alaska Air Flight Service Station|publisher=[[Federal Aviation Administration]]|accessdate=2009-08-29|date=2007-04-10|archive-date=2008-05-01|archive-url=https://web.archive.org/web/20080501074014/http://www.alaska.faa.gov/fai/afss/metar%20taf/sametara.htm|dead-url=yes}}</ref>
 
== Sebab ==
Baris 50:
[[Berkas:Konvektionsregen.jpg|alt=Diagram memperlihatkan udara lembap menjadi lebih panas daripada sekitarnya, udara bergerak ke atas dan menyebabkan hujan deras singkat.|jmpl|ka|250px|Hujan konvektif]]
 
[[Hujan konveksi|Hujan konvektif]], atau hujan deras, berasal dari awan konvektif seperti [[kumulonimbus]] atau [[kumulus kongestus]]. Hujan ini jatuh deras dengan intensitas yang cepat berubah. Hujan konvektif jatuh di suatu daerah dalam waktu yang relatif singkat, karena awan konvektif memiliki bentangan horizontal terbatas. Sebagian besar hujan di daerah [[tropis]] bersifat konvektif; namun, selain hujan konvektif, hujan stratiform juga diduga terjadi.<ref name="Geerts" /><ref>{{cite journal |author=Robert Houze |year=1997 |month=October |title=Stratiform Precipitation in Regions of Convection: A Meteorological Paradox? |journal=Bulletin of the American Meteorological Society |volume=78 |issue=10 |pages=2179 |accessdate= 2007-11-27 |doi=10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2 |issn=1520-0477}}</ref> [[Graupel]] dan [[hujan es]] menandakan konveksi.<ref>{{cite web|author=Glossary of Meteorology|year=2009|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=graupel&submit=Search|title=Graupel|publisher=[[American Meteorological Society]]|accessdate=2009-01-02|archive-date=2008-03-08|archive-url=https://web.archive.org/web/20080308123814/http://amsglossary.allenpress.com/glossary/search?p=1&query=graupel&submit=Search|dead-url=yes}}</ref> Di lintang tengah, hujan konvektif berselang-seling dan sering dikaitkan dengan batasan baroklinis seperti [[front dingin]], [[garis squall]], dan front panas.<ref>{{cite book|author=Toby N. Carlson|year=1991|url=http://books.google.com/?id=2lIVAAAAIAAJ&pg=PA216&lpg=PA216&dq=where+convection+occurs+in+the+mid-latitudes|title=Mid-latitude Weather Systems|publisher=Routledge|page=216|isbn=978-0-04-551115-0|accessdate=2009-02-07}}</ref>
 
=== Efek orografis ===
Baris 67:
{{See also|Monsun|Siklon tropis}}
{{Main|Musim hujan}}
Musim hujan adalah masa dalam suatu tahun yang terjadi selama satu atau beberapa bulan ketika sebagian besar hujan rata-rata tahunan suatu daerah jatuh di tempat tersebut.<ref>{{cite web|author=Glossary of Meteorology|year=2009|url=http://amsglossary.allenpress.com/glossary/search?id=rainy-season1|title=Rainy season|publisher=[[American Meteorological Society]]|accessdate=2008-12-27|archive-date=2009-02-15|archive-url=https://web.archive.org/web/20090215203023/http://amsglossary.allenpress.com/glossary/search?id=rainy-season1|dead-url=yes}}</ref> Istilah ''musim hijau'' juga kadang digunakan sebagai [[eufemisme]] oleh pihak pariwisata.<ref>{{cite web|author=Costa Rica Guide|year=2005|url=http://costa-rica-guide.com/when.htm|title=When to Travel to Costa Rica|publisher=ToucanGuides|accessdate=2008-12-27}}</ref> Wilayah dengan musim hujan tersebar di beberapa kawasan [[tropis]] dan [[subtropis]].<ref>{{cite web|author=Michael Pidwirny|year=2008|url=http://www.physicalgeography.net/fundamentals/9k.html|title=CHAPTER 9: Introduction to the Biosphere|publisher=PhysicalGeography.net|accessdate=2008-12-27}}</ref> Iklim dan wilayah [[sabana]] dengan cuaca [[monsun]] memiliki musim panas hujan dan musim dingin kemarau. Hutan hujan tropis teknisnya tidak memiliki musim kemarau atau hujan, karena hujan tersebar merata sepanjang tahu.<ref name="Hyde">{{cite web|author=Elisabeth M. Benders-Hyde|year=2003|url=http://www.blueplanetbiomes.org/climate.htm|title=World Climates|publisher=Blue Planet Biomes|accessdate=2008-12-27}}</ref> Sejumlah daerah dengan musim hujan akan mengalami jeda dalam pertengahan musim hujan ketika [[zona konvergensi intertropis]] atau [[truf monsun]] bergerak ke kutub dari lokasinya selama pertengahan musim panas.<ref name="JS">{{cite web|author=J . S. 0guntoyinbo and F. 0. Akintola|year=1983|url=http://www.cig.ensmp.fr/~iahs/redbooks/a140/iahs_140_0063.pdf|title=Rainstorm characteristics affecting water availability for agriculture|accessdate=2008-12-27|archive-date=2009-02-05|archive-url=https://web.archive.org/web/20090205200119/http://www.cig.ensmp.fr/~iahs/redbooks/a140/iahs_140_0063.pdf|dead-url=yes}}</ref> Ketika musim hujan terjadi selama [[musim panas]], hujan lebih sering turun selama akhir sore dan awal malam. Musim hujan adalah masa ketika [[kualitas udara]]<ref>{{cite web|author=Mei Zheng|year=2000|url=http://digitalcommons.uri.edu/dissertations/AAI9989458/|title=The sources and characteristics of atmospheric particulates during the wet and dry seasons in Hong Kong|publisher=[[University of Rhode Island]]|accessdate=2008-12-27}}</ref> dan [[air segar]] membaik,<ref>{{cite journal|author=S. I. Efe, F. E. Ogban, M. J. Horsfall, E. E. Akporhonor|year=2005|url=https://tspace.library.utoronto.ca/bitstream/1807/6445/1/ja05036.pdf|title=Seasonal Variations of Physico-chemical Characteristics in Water Resources Quality in Western Niger Delta Region, Nigeria|journal=Journal of Applied Scientific Environmental Management|accessdate=2008-12-27|issn=1119-8362|volume=9|pages=191–195|issue=1}}</ref><ref>{{cite book|author=C. D. Haynes, M. G. Ridpath, M. A. J. Williams|year=1991|url=http://books.google.com/?id=ZhvtSmJYuN4C&pg=PA91&lpg=PA91&dq=wet+season+characteristics|title=Monsoonal Australia|publisher=Taylor & Francis|page=90|isbn=978-90-6191-638-3|accessdate=2008-12-27}}</ref> dan tanaman tumbuh subur.
 
[[Siklon tropis]], sumber curah hujan sangat deras, terdiri dari massa udara besar beberapa ratus mil dengan tekanan rendah di pusatnya dan angin bertiup ke pusat searah jarum jam (belahan Bumi selatan) atau berlawanan arah jarum jam (belahan Bumi utara).<ref>{{cite web|author=[[Chris Landsea]]|year=2007|url=http://www.aoml.noaa.gov/hrd/tcfaq/D3.html|title=Subject: D3) Why do tropical cyclones' winds rotate counter-clockwise (clockwise) in the Northern (Southern) Hemisphere?|publisher=[[National Hurricane Center]]|accessdate=2009-01-02}}</ref> Meski [[siklon]] dapat mengakibatkan kematian dan kerusakan properti yang besar, inilah faktor penting dalam penguasaan hujan atas suatu daerah, karena siklon dapat membawa hujan yang sangat dibutuhkan di wilayah kering.<ref name="2005 EPac outlook">{{cite web|author=[[Climate Prediction Center]]|year=2005|url=http://www.cpc.ncep.noaa.gov/products/Epac_hurr/Epac_hurricane.html|title=2005 Tropical Eastern North Pacific Hurricane Outlook|publisher=[[National Oceanic and Atmospheric Administration]]|accessdate=2006-05-02}}</ref> Wilayah di sepanjang jalurnya dapat menerima jatah hujan setahun penuh melalui satu kali peristiwa siklon tropis.<ref>{{cite news|author=Jack Williams|url=http://www.usatoday.com/weather/whhcalif.htm|title=Background: California's tropical storms|publisher=[[USA Today]]|accessdate=2009-02-07|date=2005-05-17}}</ref>
Baris 74:
[[Berkas:Atlanta thermal.jpg|jmpl|ka|250px|Citra [[Atlanta, Georgia]] memperlihatkan penyebaran suhu, warna biru berarti suhu dingin, merah hangat, dan putih panas.]]
{{See also|Pemanasan global|Pulau panas perkotaan}}
Zat partikulat yang dihasilkan oleh gas buang mobil dan sumber-sumber polusi lain membentuk [[nuklei kondensasi awan]], yang mendorong pembentukan awan dan meningkatnya kemungkinan hujan. Akibat polusi lalu lintas penglaju dan komersial menumpuk sepanjang minggu, kemungkinan hujan meningkat: hujan memuncak pada Sabtu setelah lima hari penumpukan polusi. Di daerah padat penduduk dekat pesisir, seperti [[Pesisir Timur]] Amerika Serikat, dampaknya bisa dramatis: ada kemungkinan hujan 22% lebih tinggi pada hari Sabtu daripada Senin.<ref>{{cite journal|date=1998-08-06|author= R. S. Cerveny and R. C. Balling|title=Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region|journal=Nature|volume=394|pages=561–563|doi=10.1038/29043|issue=6693}}</ref> Dampak pulau panas perkotaan memanaskan kota sebesar {{convert|0,6|C-change|1}} hingga {{convert|5,6|C-change|1}} di atas kawasan pinggiran kota dan pedesaan sekitarnya. Panas tambahan ini mendorong gerakan yang lebih besar ke atas dan menyebabkan aktivitas hujan deras dan badai petir tambahan. Tingkat curah hujan di bawah angin kota meningkat antara 48% dan 116%. Sebagai akibat pemanasan ini, curah hujan bulanan 28% lebih besar antara {{convert|20|mi|km}} hingga {{convert|40|mi|km}} di bawah angin kota, jika dibandingkan dengan atas angin.<ref>{{cite news|title=Spain goes hi-tech to beat drought|author=Dale Fuchs|publisher=[[The Guardian]]|date=2005-06-28|url=http://www.guardian.co.uk/weather/Story/0,2763,1516375,00.html|accessdate=2007-08-02|location=London}}</ref> Sejumlah kota mengakibatkan curah hujan total meningkat sebesar 51%.<ref>{{cite web|url=http://www.gsfc.nasa.gov/topstory/20020613urbanrain.html|title=[[NASA]] Satellite Confirms Urban Heat Islands Increase Rainfall Around Cities|author=[[Goddard Space Flight Center]]|publisher=[[National Aeronautics and Space Administration]]|date=2002-06-18|accessdate=2009-07-17 |archiveurl = httphttps://web.archive.org/web/20080612173654/http://www.gsfc.nasa.gov/topstory/20020613urbanrain.html |archivedate = June 12, 2008-06-12|dead-url=no}}</ref>
 
[[Berkas:Global Warming Map.jpg|alt=Peta penyebaran suhu dunia memperlihatkan belahan Bumi utara lebih panas daripada belahan Bumi selatan selama periode tersebut.|jmpl|ka|250px|Anomali suhu permukaan rata-rata pada periode 1999 hingga 2008 dibandingkan dengan suhu rata-rata dari 1940 hingga 1980]]
Baris 85:
[[Berkas:Sturmfront auf Doppler-Radar-Schirm.jpg|250px|jmpl|ka|Ikatan badai petir terlihat di tampilan [[radar cuaca]]]]
{{Main|Ikatan hujan}}
[[Ikatan hujan]] adalah wilayah [[awan]] dan presipitasi yang panjang. Gelombang hujan dapat bersifat [[stratiform]] atau [[konveksi atmosfer|konvektif]],<ref>Glossary of Meteorology (2009). [http://amsglossary.allenpress.com/glossary/search?p=1&query=rainband&submit=Search Rainband.] {{Webarchive|url=https://web.archive.org/web/20110606102457/http://amsglossary.allenpress.com/glossary/search?p=1&query=rainband&submit=Search |date=2011-06-06 }} Retrieved on 2008-12-24.</ref> dan terbentuk akibat perbedaan suhu. Jika dilihat melalui pencitraan [[radar cuaca]], perpanjangan presipitasi ini disebut sebagai struktur terikat.<ref>Glossary of Meteorology (2009). [http://amsglossary.allenpress.com/glossary/search?id=banded-structure1 Banded structure.] {{Webarchive|url=https://web.archive.org/web/20110606102630/http://amsglossary.allenpress.com/glossary/search?id=banded-structure1 |date=2011-06-06 }} Retrieved on 2008-12-24.</ref> Ikatan hujan mendahului [[front tutupan]] panas dan [[front panas]] dikaitkan dengan gerakan lemah ke atas,<ref>Owen Hertzman (1988). [http://adsabs.harvard.edu/abs/1988PhDT.......110H Three-Dimensional Kinematics of Rainbands in Midlatitude Cyclones.] Retrieved on 2008-12-24</ref> dan cenderung lebar serta bersifat stratiform.<ref>Yuh-Lang Lin (2007). [http://books.google.com/books?id=4KXtnQ3bDeEC&pg=PA405&lpg=PA405&dq=sea+breeze+rainbands&source=bl&ots=CL5KD0HLAJ&sig=Gz5bwKi9yu8j25EbXLD3TVNNQ68&hl=en&sa=X&oi=book_result&resnum=10&ct=result Mesoscale Dynamics.] Retrieved on 2008-12-25.</ref>
 
Ikatan hujan yang muncul dekat dan mendahului [[front dingin]] bisa jadi merupakan [[garis squall]] yang mampu menghasilkan [[tornado]].<ref>Glossary of Meteorology (2009). [http://amsglossary.allenpress.com/glossary/search?id=prefrontal-squall-line1 Prefrontal squall line.] {{Webarchive|url=https://web.archive.org/web/20070817224959/http://amsglossary.allenpress.com/glossary/search?id=prefrontal-squall-line1 |date=2007-08-17 }} Retrieved on 2008-12-24.</ref> Ikatan hujan yang dikaitkan dengan front dingin dapat dibelokkan oleh pegunungan lurus terhadap orientasi front karena pembentukan [[jet penghalang]] tingkat rendah.<ref>J. D. Doyle (1997). [http://cat.inist.fr/?aModele=afficheN&cpsidt=2721180 The influence of mesoscale orography on a coastal jet and rainband.] Retrieved on 2008-12-25.</ref> Ikatan badai petir dapat terbentuk bersama [[angin laut]] dan [[angin darat]] jika kelembapan yang diperlukan untuk membentuknya ada pada saat itu. Jika ikatan hujan angin laut cukup aktif mendahului front dingin, mereka mampu menutupi lokasi front dingin tersebut.<ref>A. Rodin (1995). [http://cat.inist.fr/?aModele=afficheN&cpsidt=3570629 Interaction of a cold front with a sea-breeze front numerical simulations.] Retrieved on 2008-12-25.</ref>
 
Ketika siklon menutupi langit, sebuah truf udara panas tinggi ('''tr'''ough '''o'''f '''w'''arm air '''al'''oft), atau "trowal", akan terjadi akibat angin selatan yang kuat di perbatasan timurnya berputar-putar tinggi mengitari kawasan timur lautnya, dan mengarah ke periferi (juga disebut sabuk pengangkut panas) barat lautor, memaksa truf permukaan berlanjut ke sektor dingin lengkungan yang sama menuju front tutupan. Trowal menciptakan bagian dari siklon tutupan yang disebut sebagai kepala koma, karena bentuk awan pertengahan troposfer seperti [[koma (tanda baca)|koma]] yang menyertai fenomena ini. Ini juga bisa menjadi fokus atas presipitasi lokal yang deras, dengan kemungkinan badai petir jika atmosfer di sepanjang trowal cukup stabil untuk menciptakan konveksi.<ref name="TROW">{{cite web
|title | title = What is a TROWAL? via the Internet Wayback Machine
|author | author = [[St. Louis University]]
|date | date = 2003-08-04
|url | url = http://www.eas.slu.edu/CIPS/Presentations/Conferences/NWA2002/Snow_NWA_02/tsld003.htm
|accessdate = 2006-11-02
| accessdate = 2006-11-02 |archiveurl = http://web.archive.org/web/20060916052440/http://www.eas.slu.edu/CIPS/Presentations/Conferences/NWA2002/Snow_NWA_02/tsld003.htm |archivedate = 2006-09-16}}</ref> Pengikatan di dalam pola presipitasi kepala koma suatu [[siklon ekstratropis]] dapat menandakan hujan deras.<ref>David R. Novak, Lance F. Bosart, Daniel Keyser, and Jeff S. Waldstreicher (2002). [http://cstar.cestm.albany.edu/CAP_Projects/Project4/Banded%20Precip/novakWAF.pdf A Climatological and composite study of cold season banded precipitation in the Northeast United States.] Retrieved on 2008-12-26.</ref> Di balik siklon ekstratropis pada musim gugur dan dingin, ikatan hujan dapat terbentuk di bawah angin permukaan air panas seperti [[Danau-Danau Besar]]. Di bawah angin kepulauan, ikatan hujan deras dan badai petir dapat terbentuk karena konvergensi angin tingkat rendah di bawah angin batas pulau. Di lepas pantai [[California]], hal ini terjadi ketika adanya peningkatan front dingin.<ref>Ivory J. Small (1999). [http://www.wrh.noaa.gov/wrh/99TAs/9918/index.html An observation study of island effect bands: precipitation producers in Southern California.] Retrieved on 2008-12-26.</ref>
|archiveurl = https://web.archive.org/web/20060916052440/http://www.eas.slu.edu/CIPS/Presentations/Conferences/NWA2002/Snow_NWA_02/tsld003.htm
|archivedate = 2006-09-16
|dead-url = yes
| accessdate = 2006-11-02 |archiveurl = http://web.archive.org/web/20060916052440/http://www.eas.slu.edu/CIPS/Presentations/Conferences/NWA2002/Snow_NWA_02/tsld003.htm |archivedate = 2006-09-16}}</ref> Pengikatan di dalam pola presipitasi kepala koma suatu [[siklon ekstratropis]] dapat menandakan hujan deras.<ref>David R. Novak, Lance F. Bosart, Daniel Keyser, and Jeff S. Waldstreicher (2002). [http://cstar.cestm.albany.edu/CAP_Projects/Project4/Banded%20Precip/novakWAF.pdf A Climatological and composite study of cold season banded precipitation in the Northeast United States.] Retrieved on 2008-12-26.</ref> Di balik siklon ekstratropis pada musim gugur dan dingin, ikatan hujan dapat terbentuk di bawah angin permukaan air panas seperti [[Danau-Danau Besar]]. Di bawah angin kepulauan, ikatan hujan deras dan badai petir dapat terbentuk karena konvergensi angin tingkat rendah di bawah angin batas pulau. Di lepas pantai [[California]], hal ini terjadi ketika adanya peningkatan front dingin.<ref>Ivory J. Small (1999). [http://www.wrh.noaa.gov/wrh/99TAs/9918/index.html An observation study of island effect bands: precipitation producers in Southern California.] Retrieved on 2008-12-26.</ref>
 
Ikatan hujan dengan siklon tropis memiliki orientasi melengkung. Siklon tropis berisikan hujan deras dan badai petir yang, bersama dinding mata dan mata, membentuk [[siklon tropis|hurikan atau badai tropis]]. Batas ikatan hujan di sekitar siklon tropis dapat membantu menentukan intensitas siklon tersebut.<ref name="ODT">[[University of Wisconsin–Madison]] (1998).[http://cimss.ssec.wisc.edu/tropic/research/products/dvorak/odt.html Objective Dvorak Technique.] Retrieved on 2006-05-29.</ref>
Baris 159 ⟶ 163:
Klasifikasi Köppen bergantung pada nilai suhu dan presipitasi rata-rata bulanan. Bentuk klasifikasi Köppen yang umum digunakan memiliki lima jenis utama mulai dari A hingga E. Jenis utama tersebut adalah A, tropis; B, kering; C, sejuk lintang menengah; D, dingin lintang menengah; dan E, kutub. Lima klasifikasi utama ini dapat dibagi lagi menjadi klasifikasi sekunder seperti [[hutan hujan]], [[monsun]], [[sabana tropis]], [[subtropis lembap]], [[daratan lembap]], [[iklim lautan]], [[iklim mediterania]], [[stepa]], [[iklim subarktik]], [[tundra]], [[daratan es kutub]], dan gurun.
 
Hutan hujan ditandai dengan curah hujan tinggi yang minimum normal tahunnya antara {{convert|1750|mm|in}} dan {{convert|2000|mm|in}}.<ref>{{cite web|author=Susan Woodward|url=http://www.radford.edu/~swoodwar/CLASSES/GEOG235/biomes/rainforest/rainfrst.html|title=Tropical Broadleaf Evergreen Forest: The Rainforest|date=1997-10-29|accessdate=2008-03-14|publisher=[[Radford University]]|archive-date=2008-02-25|archive-url=https://web.archive.org/web/20080225054655/http://www.radford.edu/~swoodwar/CLASSES/GEOG235/biomes/rainforest/rainfrst.html|dead-url=yes}}</ref> Sebuah sabana tropis adalah [[bioma]] [[daratan rumput]] yang terletak di kawasan iklim [[semi-gersang]] hingga semi-[[lembap]] di [[lintang]] [[subtropis]] dan [[tropis]] dengan curah hujan antara {{convert|750|mm|in}} dan {{convert|1270|mm|in}} per tahun. Sabana tropis tersebar di [[Afrika]], [[India]], wilayah utara [[Amerika Selatan]], [[Malaysia]], dan [[Australia]].<ref name="SAVWOOD">{{cite web|author=Susan Woodward|url=http://www.radford.edu/~swoodwar/CLASSES/GEOG235/biomes/savanna/savanna.html|title=Tropical Savannas|date=2005-02-02|accessdate=2008-03-16|publisher=[[Radford University]]|archive-date=2008-02-25|archive-url=https://web.archive.org/web/20080225082154/http://www.radford.edu/~swoodwar/CLASSES/GEOG235/biomes/savanna/savanna.html|dead-url=yes}}</ref> Zona iklim subtropis lembap adalah daerah yang hujan musim dinginnya dikaitkan dengan [[badai]] besar yang diarahkan angin [[westerlies]] dari barat ke timur. Kebanyakan hujan musim panas terjadi selama badai petir dan siklon tropis.<ref>{{cite encyclopedia | title = Humid subtropical climate | encyclopedia = [[Encyclopædia Britannica]] | publisher = Encyclopædia Britannica Online | year = 2008 | url = http://www.britannica.com/eb/article-53358/climate | accessdate = 2008-05-14 }}</ref> Iklim subtropis lembap terletak di daratan sebelah timur, antara [[lintang]] 20° dan 40° derajat dari khatulistiwa.<ref>{{cite web|author=Michael Ritter|url=http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/climate_systems/humid_subtropical.html|date=2008-12-24|publisher=[[University of Wisconsin–Stevens Point]]|title=Humid Subtropical Climate|accessdate=2008-03-16}}</ref>
 
Iklim lautan (atau oseanik/maritim) dapat dijumpai di sepanjang pesisir barat di lintang tengah seluruh benua di dunia, berbatasan dengan lautan dingin dan wilayah tenggara [[Australia]], dan memiliki presipitasi besar sepanjang tahun.<ref>{{cite book|author=Lauren Springer Ogden|title=Plant-Driven Design|url=https://archive.org/details/plantdrivendesig0000ogde|page=[https://archive.org/details/plantdrivendesig0000ogde/page/78 78]|isbn=9780881928778|publisher=Timber Press|year=2008|accessdate=2009-07-19}}</ref> Iklim mediterania membentuk iklim benua di [[Cekungan Mediterania]], sebagian wilayah barat [[Amerika Utara]], sebagian [[Australia Barat]] dan [[Australia Selatan|Selatan]], wilayah barat daya [[Afrika Selatan]] dan sebagian wilayah tengah [[Chili]]. Iklim ini ditandai oleh musim panas yang panas dan kering dan musim dingin yang dingin dan basah.<ref>{{cite web|author=Michael Ritter|url=http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/climate_systems/mediterranean.html|title=Mediterranean or Dry Summer Subtropical Climate|accessdate=2009-07-17|date=2008-12-24|publisher=[[University of Wisconsin–Stevens Point]]|archive-date=2009-08-05|archive-url=https://web.archive.org/web/20090805040919/http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/climate_systems/mediterranean.html|dead-url=yes}}</ref> Stepa adalah [[daratan rumput]] kering.<ref>{{cite web|author=Brynn Schaffner and Kenneth Robinson|url=http://www.blueplanetbiomes.org/steppe_climate_page.htm|title=Steppe Climate|date=2003-06-06|accessdate=2008-04-15|publisher=West Tisbury Elementary School|archive-date=2008-04-22|archive-url=https://web.archive.org/web/20080422233231/http://www.blueplanetbiomes.org/steppe_climate_page.htm|dead-url=yes}}</ref> Iklim subarktik bersifat dingin dengan [[permafrost]] abadi dan presipitasi kecil.<ref name="subritter">{{cite web|author=Michael Ritter|url=http://www.uwsp.edu/geo/faculty/ritter/geog101/textbook/climate_systems/subarctic.html|title=Subarctic Climate|accessdate=2008-04-16|publisher=[[University of Wisconsin–Stevens Point]]|date=2008-12-24|archive-date=2011-08-27|archive-url=https://www.webcitation.org/61FpOO53L?url=http://www4.uwsp.edu/geo/faculty/ritter/geog101/textbook/climate_systems/subarctic.html|dead-url=yes}}</ref>
 
== Pengukuran ==
Baris 179 ⟶ 183:
{{See also|Radar cuaca}}
[[Berkas:Radar-accumulations eng.png|ka|jmpl|250px|Akumulasi curah hujan 24 jam di radar Val d'Irène, Kanada Timur. Zona tanpa data di timur dan barat daya disebabkan adanya sorotan sinar dari pegunungan. (Sumber: Environment Canada)]]
Salah satu kegunaan utama radar cuaca adalah mampu menilai jumlah curah hujan yang jatuh di cekungan besar untuk keperluan [[hidrologi]]s.<ref>{{cite journal|url=http://www.springerlink.com/content/g5447473427jl6w1/|title=Radar Rainfall Estimates for Hydrologic and Landslide Modeling|author=Kang-Tsung Chang, Jr-Chuan Huang, Shuh-Ji Kao, and Shou-Hao Chiang|doi=10.1007/978-3-540-71056-1_6|isbn=978-3-540-71056-1|journal=Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications|year=2009|accessdate=2010-01-15|pages=127–145}}{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> Misalnya, pengendalian banjir sungai, pengelolaan selokan bawah tanah, dan pembangunan bendungan adalah semua bidang yang memerlukan data akumulasi curah hujan. Perhitungan curah hujan radar melengkapi data stasiun darat yang dapat digunakan untuk kalibrasi. Untuk menghasilkan akumulasi radar, tingkat hujan di satu titik dihitung menggunakan nilai data reflektivitas pada satu titik jaringan. Persamaan radar kemudian dipakai, yaitu
:<math> Z = A R^b </math>,
 
Z berarti reflektivitas radar, R berarti tingkat curah hujan, dan A dan b adalah konstanta.<ref>{{cite web|url=http://ecommons.library.cornell.edu/bitstream/1813/2115/1/pdfthesis.pdf|publisher=[[Cornell University]]|author=Eric Chay Ware|title=Corrections to Radar-Estimated Precipitation Using Observed Rain Gauge Data: A Thesis|date=August 2005|page=1|accessdate=2010-01-02}}</ref> Perhitungan curah hujan satelit memakai instrumen [[gelombang mikro]] pasif di atas [[orbit kutub]] serta [[satelit cuaca]] [[orbit geostasioner|geostasioner]] untuk mengukur tingkat curah hujan secara tidak langsung.<ref>{{cite web|url=http://www.isac.cnr.it/~ipwg/meetings/melbourne/papers/Mngadi.pdf|title=Southern Africa Satellite Derived Rainfall Estimates Validation|author=Pearl Mngadi, Petrus JM Visser, and Elizabeth Ebert|page=1|publisher=International Precipitation Working Group|date=October 2006|accessdate=2010-01-05|archive-date=2010-01-30|archive-url=https://www.webcitation.org/5nAoR7J6a?url=http://www.isac.cnr.it/~ipwg/meetings/melbourne/papers/Mngadi.pdf|dead-url=yes}}</ref> Untuk menghasilkan akumulasi curah hujan pada satu periode waktu tertentu, semua akumulasi dari masing-masing kotak jaringan di dalam gambar pada waktu itu harus dijumlahkan.
 
=== Intensitas ===
Baris 211 ⟶ 215:
=== Pertanian ===
[[Berkas:Heavy Rains in Southern Japan.gif|jmpl|250px|Prakiraan hujan untuk [[Jepang]] Selatan dan sekitarnya pada 20–27 Juli 2009.]]
Presipitasi, khususnya hujan, memiliki dampak dramatis terhadap [[pertanian]]. Semua [[tumbuhan]] memerlukan air untuk hidup, sehingga hujan (cara mengairi paling efektif) sangat penting bagi pertanian. Pola hujan biasa bersifat vital untuk kesehatan [[tumbuhan]], terlalu banyak atau terlalu sedikit hujan dapat membahayakan, bahkan merusak [[panen]]. [[Kekeringan]] dapat mematikan panen dan menambah erosi,<ref>{{cite web|url=http://www.bom.gov.au/climate/drought/livedrought.shtml|title=Living With Drought|author=[[Bureau of Meteorology]]|publisher=Commonwealth of Australia|year=2010|accessdate=2010-01-15}}</ref> sementara terlalu basah dapat mendorong pertumbuhan [[jamur]] berbahaya.<ref>{{cite web|url=http://agnewsarchive.tamu.edu/dailynews/stories/CROP/Jun0607a.htm|title=Texas Crop and Weather|date=2007-06-06|author=Robert Burns|publisher=[[Texas A&M University]]|accessdate=2010-01-15|archive-date=2010-06-20|archive-url=https://web.archive.org/web/20100620134950/http://agnewsarchive.tamu.edu/dailynews/stories/CROP/Jun0607a.htm|dead-url=yes}}</ref> Tumbuhan memerlukan beragam jumlah air hujan untuk hidup. Misalnya, [[kaktus]] tertentu memerlukan sedikit air,<ref>{{cite web|url=http://www.sbs.utexas.edu/mauseth/researchoncacti/|title=Mauseth Research: Cacti|author=James D. Mauseth|publisher=[[University of Texas]]|date=2006-07-07|accessdate=2010-01-15}}</ref> sementara tanaman tropis memerlukan ratusan inci hujan per tahun untuk hidup.
 
Di daerah musim hujan dan kemarau, nutrien [[tanah]] tersapu dan erosi meningkat selama musim hujan.<ref name="JS"/> Hewan memiliki strategi adaptasi dan bertahan hidup di wilayah basah. Musim kemarau sebelumnya mengakibatkan kelangkaan makanan menjelang musim hujan, karena tanaman panen harus tumbuh terlebih dahulu.<ref>[[A. Roberto Frisancho]] (1993). [http://books.google.com/books?id=-K_SYHBo42MC&pg=PA388&lpg=PA388&dq=wet+season+characteristics&source=web&ots=QSA_t3uuZU&sig=iin9pzOynVHyA7x4wMYEkApeCV8&hl=en&sa=X&oi=book_result&resnum=5&ct=result Human Adaptation and Accommodation.] University of Michigan Press, pp. 388. ISBN 978-0-472-09511-7. Retrieved on 2008-12-27.</ref> Negara-negara berkembang mencatat bahwa penduduknya memiliki fluktuasi berat badan musiman karena kelangkaan makanan sebelum panen pertama yang terjadi pada akhir musim hujan.<ref>{{cite journal|author=Marti J. Van Liere, Eric-Alain D. Ategbo, Jan Hoorweg, Adel P. Den Hartog, and Joseph G. A. J. Hautvast|title=The significance of socio-economic characteristics for adult seasonal body-weight fluctuations: a study in north-western Benin|journal=British Journal of Nutrition|publisher=Cambridge University Press|year=1994|volume=72|pages=479–488|url=http://journals.cambridge.org/download.php?file=%2FBJN%2FBJN72_03%2FS0007114594000504a.pdf&code=40a3bcb87f8abc243d961c531b3262e2|doi=10.1079/BJN19940049|pmid=7947661|issue=3}}</ref> Hujan dapat [[penampungan air hujan|ditampung]] menggunakan [[tangki air hujan]]; diolah agar dapat dikonsumsi, non-konsumsi dalam ruang atau irigasi.<ref>{{cite web|url=http://rainwaterharvesting.tamu.edu/drinking/gi-366_2021994.pdf|title=Harvesting, Storing, and Treating Rainwater for Domestic Indoor Use|author=[[Texas Department of Environmental Quality]]|publisher=[[Texas A&M University]]|date=2008-01-16|accessdate=2010-01-15|archiveurl=httphttps://web.archive.org/web/20070704182128/http://rainwaterharvesting.tamu.edu/drinking/gi-366_2021994.pdf|archivedate=2007-07-04|dead-url=no}}</ref> Hujan berlebihan dalam waktu singkat dapat menyebabkan [[banjir]] bandang.<ref>{{cite web|url=http://amsglossary.allenpress.com/glossary/search?p=1&query=flash+flood&submit=Search|title=Flash Flood|author=Glossary of Meteorology|publisher=[[American Meteorological Society]]|date=June 2000|accessdate=2010-01-15}}</ref>
 
=== Budaya ===
Tanggapan budaya terhadap hujan berbeda-beda di seluruh dunia. Di daerah ber[[iklim]] [[temperat|sedang]], masyarakat, terutama pria, cenderung kesal ketika [[cuaca]] tidak stabil atau berawan.<ref>{{cite journal|title=The effect of weather on mood, productivity, and frequency of emotional crisis in a temperate continental climate|journal=International Journal of Biometeorology|url=http://www.springerlink.com/content/j6687l0q639541p3/|doi=10.1007/BF01044907|volume=32|date=1986-12-10|accessdate=2010-01-15|author=A. G. Barnston|pages=134–143|issue=4}}{{Pranala mati|date=Februari 2021 |bot=InternetArchiveBot |fix-attempted=yes }}</ref> Hujan juga dapat membawa kebahagiaan dan dianggap menenangkan serta memiliki estetika yang dinikmati masyarakat. Di daerah kering seperti [[India]],<ref>{{cite web|url=http://www.thaindian.com/newsportal/enviornment/sudden-spell-of-rain-lifts-mood-in-delhi_100172192.html|publisher=Thaindian news|title=Sudden spell of rain lifts mood in Delhi|date=2009-03-23|accessdate=2010-01-15|author=IANS}}</ref> atau ketika terjadi [[kekeringan]] di daerah lain,<ref>{{cite web|url=http://www.mysanantonio.com/business/Rain_lifts_mood_of_farmers.html|title=Rain lifts moods of farmers|date=2009-09-11|accessdate=2010-01-15|author=William Pack|publisher=[[San Antonio Express-News]]}}</ref> hujan memperbaiki suasana hati masyarakat. Di [[Botswana]], kata 'hujan' dalam bahasa [[Setswana]], "pula", digunakan sebagai [[pula Botswana|nama mata uang nasional]] karena pentingnya hujan terhadap ekonomi negara gurun ini.<ref>{{cite web|url=http://www.pulapulapula.co.uk/Glossary.html|title=Glossary of Setswana and Other Words|author=Robyn Cox|year=2007|accessdate=2010-01-15|archive-date=2012-08-04|archive-url=https://www.webcitation.org/69g1Zh0vv?url=http://www.pulapulapula.co.uk/Glossary.html|dead-url=yes}}</ref> Beberapa budaya mengembangkan cara menghadapi hujan dengan berbagai alat lindung seperti [[payung]] dan [[jas hujan]], serta alat pengalihan seperti [[talang air]] dan [[drainase badai]] yang mengalirkan air hujan ke selokan.<ref>{{cite book|url=http://unix.eng.ua.edu/~rpitt/Publications/BooksandReports/Stormwater%20Effects%20Handbook%20by%20%20Burton%20and%20Pitt%20book/chp1.pdf|page=4|year=2002|author=Allen Burton and Robert Pitt|title=Stormwater Effects Handbook: A Toolbox for Watershed Managers, Scientists, and Engineers|publisher=CRC Press, LLC|accessdate=2010-01-15}}</ref> Banyak orang mencium adanya bau yang menenangkan selama dan sesaat setelah hujan. Sumber bau ini adalah [[petrikor]], minyak yang dihasilkan tumbuh-tumbuhan, kemudian diserap bebatuan dan tanah dan dilepaskan ke udara selama hujan berlangsung.<ref name="Bear1964">{{Cite journal
| volume = 201
| issue = 4923
Baris 241 ⟶ 245:
| accessdate = 2007-09-18
| publisher = Department of the Environment and Heritage
| archiveurl = httphttps://web.archive.org/web/20070205015628/http://www.environment.gov.au/biodiversity/about-biodiversity.html
| archivedate = 2007-02-05
| dead-url = no
}}
}}</ref> sehingga menjadikannya [[benua]] berpenghuni terkering di dunia. Di Amerika Selatan, untaian pegunungan [[Andes]] menahan kelembapan [[Samudra Pasifik]] yang tiba di benua ini, sehingga memunculkan iklim mirip gurun di wilayah barat Argentina.<ref name="Andes"/> Wilayah kering di Amerika Serikat adalah wilayah tempat [[gurun Sonora]] menyapu Desert Southwest, Great Basin, dan Wyoming bagian tengah.<ref>{{cite web|date=2009-09-17|author=NationalAtlas.gov|publisher=[[United States Department of the Interior]]|url=http://www.nationalatlas.gov/printable/precipitation.html|title=Precipitation of the Individual States and of the Conterminous States|accessdate=2010-01-15}}</ref>
 
=== Wilayah basah ===
{{See also|Monsun|Truf monsun}}
Wilayah khatulistiwa dekat [[Zona Konvergensi Intertropis]] (ITCZ), atau truf monsun, adalah wilayah terbasah di dunia. Setiap tahun, sabuk hujan di wilayah tropis bergerak ke utara pada bulan Agustus, kemudian bergerak kembali ke selatan menuju [[Belahan Bumi Selatan]] pada bulan Februari dan Maret.<ref>{{cite web|url=http://jisao.washington.edu/data/ud/africa/|publisher=[[University of Washington]]|title=Africa Rainfall Climatology|author=Todd Mitchell|date=October 2001|accessdate=2010-01-02}}</ref> Di Asia, hujan tersebar di seluruh wilayah selatan benua ini dari kawasan timur dan timur laut India hingga Filipina dan Cina selatan sampai Jepang karena monsun mengadveksikan kelembapan dari [[Samudera Hindia]] ke wilayah ini.<ref>{{cite journal|url=http://airsea-www.jpl.nasa.gov/publication/paper/CARRS-ms5.pdf|title=Monsoon, Orography, and Human Influence on Asian Rainfall|journal=Proceedings of the First International Symposium in Cloud-prone & Rainy Areas Remote Sensing (CARRS), Chinese University of Hong Kong|author=W. Timothy Liu, Xiaosu Xie, and Wenqing Tang|publisher=[[National Aeronautic and Space Administration]] [[Jet Propulsion Laboratory]]|year=2006|accessdate=2010-01-04}}</ref> Truf monsun dapat memanjang ke utara hingga [[garis paralel utara ke-40|garis paralel ke-40]] di Asia Timur pada bulan Agustus sebelum bergerak ke selatan. Pergerakannya ke kutub ini didorong oleh monsun musim panas yang ditandai dengan munculnya tekanan udara rendah ([[tekanan rendah panas]]) di kawasan terpanas Asia.<ref name="NCFMRF">{{cite web|author=National Centre for Medium Range Forecasting|date=2004-10-23|url=http://www.ncmrwf.gov.in/Chapter-II.pdf|title=Chapter-II Monsoon-2004: Onset, Advancement and Circulation Features|publisher=India Ministry of Earth Sciences|accessdate=2008-05-03|archiveurl=httphttps://web.archive.org/web/20110721161408/http://www.ncmrwf.gov.in/Chapter-II.pdf|archivedate=2011-07-21|dead-url=no}}</ref><ref>{{cite web|author=[[Australian Broadcasting Corporation]]|date=1999-08-11|url=http://www.abc.net.au/storm/monsoon/print.htm|title=Monsoon|accessdate=2008-05-03}}</ref> Sirkulasi monsun sejenis, namun lebih lemah, terjadi di [[Amerika Utara]] dan [[Australia]].<ref>{{cite journal|author=David J. Gochis, Luis Brito-Castillo, and W. James Shuttleworth|url=http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6C-4GX0CS2-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1155477058&_rerunOrigin=google&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=39b2d61a04776e3b1b2b56071cdb5b2a|title=Hydroclimatology of the North American Monsoon region in northwest Mexico|doi=10.1016/j.jhydrol.2005.04.021|date=2006-01-10|pages=53–70|volume=316|journal=[[Journal of Hydrology]]|accessdate=2010-01-05|issue=1–4}}</ref><ref>[[Bureau of Meteorology]]. [http://www.bom.gov.au/weather/sa/giles/climate.shtml Climate of Giles.] Retrieved on 2008-05-03.</ref> Pada musim panas, monsun Barat Laut bersama kelembapan [[Teluk California]] dan [[Teluk Meksiko]] bergerak mengitari [[pegunungan subtropis]] di Samudera Atlantik, mengangkut badai petir sore dan malam di wilayah selatan Amerika Serikat dan [[Dataran Besar]].<ref name="JHorel"/> Daratan Amerika Serikat di sebelah timur [[garis meridian barat ke-98|meridian ke-98]], pegunungan [[Barat Laut Pasifik]], dan [[Sierra Nevada (AS)|Sierra Nevada]] adalah wilayah terbasah di negara ini, dengan curah hujan rata-rata melebihi {{convert|30|in|mm}} per tahun.<ref name="USatl">NationalAtlas.gov [http://www.nationalatlas.gov/printable/precipitation.html Precipitation of the Individual States and of the Conterminous States.] Retrieved on 2008-03-09.</ref> [[Siklon tropis]] mendorong terjadinya hujan di seluruh wilayah selatan Amerika Serikat,<ref>{{cite journal|url=http://cat.inist.fr/?aModele=afficheN&cpsidt=21888982|title=The Contribution of Eastern North Pacific Tropical Cyclones to the Rainfall Climatology of the Southwest United States|author=Kristen L. Corbosiero, Michael J. Dickinson, and Lance F. Bosart|journal=[[Monthly Weather Review]]|issn=0027-0644|volume=137|pages=2415–2435|publisher=[[American Meteorological Society]]|issue=8|doi=10.1175/2009MWR2768.1|year=2009}}</ref> serta [[Puerto Riko]], [[Kepulauan Virgin Amerika Serikat]],<ref>[[Central Intelligence Agency]]. [https://www.cia.gov/library/publications/the-world-factbook/geos/vq.html The World Factbook – Virgin Islands.] Retrieved on 2008-03-19.</ref> [[Kepulauan Mariana Utara]],<ref>[[BBC]]. [httphttps://web.archive.org/web/20060215051256/http://www.bbc.co.uk/weather/world/country_guides/results.shtml?tt=TT004880 Weather Centre - World Weather - Country Guides - Northern Mariana Islands.] Retrieved on 2008-03-19.</ref> [[Guam]], dan [[Samoa Amerika]].
 
=== Dampak Westerlies ===
Baris 255 ⟶ 259:
Westerly bergerak dari garis depan sejuk Atlantik Utara ke daerah lembap di Eropa Barat, terutama [[Britania Raya]], yang pesisir baratnya menerima curah hujan antara {{convert|1000|mm|in|abbr=on}} di permukaan laut dan {{convert|2500|mm|in|abbr=on}} di pegunungan setiap tahunnya. [[Bergen]], Norwegia adalah salah satu kota hujan terkenal di Eropa dengan curah hujan rata-rata tahunan mencapai {{convert|2250|mm|in|abbr=on}}. Selama musim gugur, dingin, dan [[musim semi|semi]], sistem badai Pasifik mengangkut sebagian besar hujan untuk [[Hawaii]] dan Amerika Serikat bagian barat.<ref name="JHorel">J. Horel. [http://www.met.utah.edu/jhorel/html/wx/climate/normrain.html Normal Monthly Precipitation, Inches.] Retrieved on 2008-03-19.</ref> Di puncak pegunungan, arus jet membawa hujan maksimum musim panas ke [[Danau-Danau Besar]]. Kawasan badai petir besar bernama [[Kompleks Konvektif Skala Meso|kompleks konvektif skala meso]] bergerak ke Dataran Besar, Barat Tengah, dan Danau-Danau Besar selama musim panas, sehingga menyumbang 10% hujan tahunan di wilayah ini.<ref name="Walker">Walker S. Ashley, Thomas L. Mote, P. Grady Dixon, Sharon L. Trotter, Emily J. Powell, Joshua D. Durkee, and Andrew J. Grundstein. [http://ams.allenpress.com/archive/1520-0493/131/12/pdf/i1520-0493-131-12-3003.pdf Distribution of Mesoscale Convective Complex Rainfall in the United States.] Retrieved on 2008-03-02.</ref>
 
[[Osilasi Selatan-El Niño]] mempengaruhi persebaran hujan dengan mengacaukan pola hujan di seluruh Amerika Serikat bagian Barat,<ref>John Monteverdi and Jan Null. [http://tornado.sfsu.edu/geosciences/elnino/elnino.html Western Region Technical Attachment NO. 97-37 November 21, 1997: El Niño and California Precipitation.] Retrieved on 2008-02-28.</ref> Barat Tengah,<ref>{{cite web|author=Southeast Climate Consortium|date=2007-12-20|url=http://www.agclimate.org/Development/apps/agClimate/controller/perl/agClimate.pl/agClimate.pl?function=climforecast/outlook.html&location=local&type |title=SECC Winter Climate Outlook|accessdate=2008-02-29 |archiveurl = httphttps://web.archive.org/web/20080304212445/http://www.agclimate.org/Development/apps/agClimate/controller/perl/agClimate.pl/agClimate.pl?function=climforecast/outlook%2Foutlook.html&location=local&type |archivedate = 2008-03-04|dead-url=no}}</ref><ref>{{cite web|author=Reuters|date=2007-02-16|url=http://www.reuters.com/article/domesticNews/idUSN1619766420070216|title=La Nina could mean dry summer in Midwest and Plains|accessdate=2008-02-29}}</ref> Tenggara,<ref>[[Climate Prediction Center]]. [http://www.cpc.noaa.gov/products/analysis_monitoring/ensocycle/ensorain.shtml El Niño (ENSO) Related Rainfall Patterns Over the Tropical Pacific.] {{Webarchive|url=https://web.archive.org/web/20100528035733/http://www.cpc.noaa.gov/products/analysis_monitoring/ensocycle/ensorain.shtml |date=2010-05-28 }} Retrieved on 2008-02-28.</ref> dan wilayah tropis. Ada pula bukti bahwa [[pemanasan global]] mendorong peningkatan hujan di Amerika Utara bagian timur, sementara kekeringan semakin sering terjadi di wilayah tropis dan subtropis.
 
=== Daerah terlembap ===
[[Cherrapunji]], terletak di lereng selatan [[Himalaya|Himlaya Timur]] di [[Shillong]], [[India]] adalah salah satu kawasan terlembap atau terbasah di Bumi, dengan curah hujan rata-rata tahunan mencapai {{convert|11430|mm|in|abbr=on}}. Curah hujan tertinggi yang tercatat dalam satu tahun adalah {{convert|22987|mm|in|abbr=on}} pada 1861. Rata-rata 38 tahun di [[Mawsynram]], [[Meghalaya]], [[India]] adalah {{convert|11873|mm|in|abbr=on}}.<ref>{{cite web|url=http://www.clas.ufl.edu/users/jsouthwo/web/6-per-page-Wettest-Mawsynram-in-India.pdf|title=Mawsynram in India|author=A. J. Philip|publisher=[[Tribune News Service]]|date=2004-10-12|accessdate=2010-01-05}} {{Dead link|archive-date=September 2010-01-30|botarchive-url=https://www.webcitation.org/5nAoRHbtP?url=http://www.clas.ufl.edu/users/jsouthwo/web/6-per-page-Wettest-Mawsynram-in-India.pdf|dead-url=H3llBotyes}}</ref> Daerah terlembap di Australia adalah [[Mount Bellenden Ker]] di timur laut negara ini yang memiliki curah hujan rata-rata {{convert|8000|mm|in}} per tahun. Pada 2000, curah hujan di daerah ini mencetak rekor tertinggi yaitu {{convert|12200|mm|in|1|abbr=on}}.<ref>{{cite web |title = Significant Weather - December 2000 (Rainfall) |url = http://www.bom.gov.au/inside/services_policy/public/sigwxsum/sigw1200.shtml#rain |publisher = Commonwealth of Australia|author=[[Bureau of Meteorology]] |year=2010|accessdate = 2010-01-15}}</ref> [[Mount Waialeale]] di pulau [[Kaua'i]] di [[Kepulauan Hawaii]] memiliki curah hujan rata-rata lebih dari {{convert|11680|mm|in}} dalam 32 tahun terakhir, dengan rekor {{convert|17340|mm|in}} tahun 1982. Puncaknya dianggap sebagai salah satu daerah terbasah di Bumi. Daerah ini telah dipromosikan dalam literatur wisata selama beberapa tahun sebagai tempat terbasah di Bumi.<ref>{{cite web |title = USGS 220427159300201 1047.0 Mt. Waialeale rain gauge nr Lihue, Kauai, HI |url = http://waterdata.usgs.gov/hi/nwis/uv?site_no=220427159300201&PARAmeter_cd=00045 |publisher = USGS Real-time rainfall data at Wai{{okina}}ale{{okina}}ale Raingauge |accessdate = 2008-12-11}}</ref> [[Lloró]], sebuah kota di [[Departemen Chocó|Chocó]], [[Kolombia]], dianggap seabgai daerah dengan curah hujan terukur terbesar di dunia, rata-rata mencapai {{convert|13300|mm|in|abbr=on}} per tahun.<ref name="NCDCxrain">{{cite web|url=http://www.ncdc.noaa.gov/oa/climate/globalextremes.html|title=Global Measured Extremes of Temperature and Precipitation|author=[[National Climatic Data Center]]|date=2005-08-09|accessdate=2007-01-18|publisher=[[National Oceanic and Atmospheric Administration]]}}</ref> [[Departemen Chocó]] sangat lembap. [[Tutunendo]], sebuah kota di departemen ini merupakan salah satu tempat yang diperkirakan terlembap di Bumi, rata-rata tahunannya mencapai {{convert|11394|mm|in|abbr=on}}; pada tahun 1974, kota ini memiliki curah hujan {{convert|26303|mm|ftin|abbr=on}}, curah hujan tahunan terbesar yang pernah diukur di Kolombia. Tidak seperti Cherrapunji yang hujan antara April dan September, Tutunendo mengalami hujan tersebar merata sepanjang tahun.<ref>{{cite web |title = Tutunendaó, Choco: la ciudad colombiana es muy lluviosa |url = http://www.elperiodico.com/default.asp?idpublicacio_PK=46&idioma=CAS&idnoticia_PK=523370&idseccio_PK=1038 |publisher = El Periódico.com |author = Alfred Rodríguez Picódate |date = 2008-02-07 |accessdate = 2008-12-11}} {{Dead link|archive-date =September 20102016-05-15 |botarchive-url =H3llBot http://arquivo.pt/wayback/20160515185311/http://www.elperiodico.com/default.asp?idpublicacio_PK=46&idioma=CAS&idnoticia_PK=523370&idseccio_PK=1038 |dead-url = yes }}</ref> [[Quibdó]], ibu kota Chocó, mengalami hujan paling banyak di Bumi di antara kota-kota lebih dari 100.000 jiwa, yaitu {{convert|9000|mm|in}} per tahun.<ref name="NCDCxrain"/> Badai di Chocó dapat menghasilkan curah hujan {{convert|500|mm|in|abbr=on}} dalam satu hari. Jumlah ini lebih banyak daripada curah hujan di berbagai kota di dunia dalam satu tahun.
 
{| class="wikitable" border="1" cellpadding="5" cellspacing="0" align="center"