Teorema dasar aljabar: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k clean up |
Rescuing 2 sources and tagging 0 as dead.) #IABot (v2.0.8 |
||
Baris 177:
=== Sumber bersejarah ===
*{{Citation|last = Cauchy|first = Augustin-Louis|author-link = Augustin-Louis Cauchy|publication-date = 1992|year = 1821|title = Cours d'Analyse de l'École Royale Polytechnique, 1<sup>ère</sup> partie: Analyse Algébrique|url = http://gallica.bnf.fr/ark:/12148/bpt6k29058v|place = Paris|publisher = Éditions Jacques Gabay|isbn = 978-2-87647-053-8}} (tr. Course on Analysis of the [[École Polytechnique|Royal Polytechnic Academy]], part 1: Algebraic Analysis)
* {{citation|last = Euler|first = Leonhard|author-link = Leonhard Euler|year = 1751|title = Recherches sur les racines imaginaires des équations|periodical = Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin|location = Berlin|volume = 5|pages = 222–288|url = http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist/1749&seite:int=228|accessdate = 2021-03-10|archive-date = 2008-12-24|archive-url = https://web.archive.org/web/20081224062952/http://bibliothek.bbaw.de/bbaw/bibliothek-digital/digitalequellen/schriften/anzeige/index_html?band=02-hist%2F1749&seite%3Aint=228|dead-url = yes}}. English translation: {{citation|last = Euler|first = Leonhard|author-link = Leonhard Euler|year = 1751|title = Investigations on the Imaginary Roots of Equations|periodical = Histoire de l'Académie Royale des Sciences et des Belles-Lettres de Berlin|location = Berlin|volume = 5|pages = 222–288|url = http://eulerarchive.maa.org/docs/translations/E170en.pdf}}
* {{citation|last = Gauss|first = Carl Friedrich|author-link = Carl Friedrich Gauss|year = 1799|title = Demonstratio nova theorematis omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse|place = [[Helmstedt]]|publisher = C. G. Fleckeisen}} (tr. New proof of the theorem that every integral rational algebraic function of one variable can be resolved into real factors of the first or second degree).
* {{Citation|last=Gauss|first=Carl Friedrich|year=1866|title=Carl Friedrich Gauss Werke|publisher=Königlichen Gesellschaft der Wissenschaften zu Göttingen|volume=Band III|url={{Google books|WFxYAAAAYAAJ|Werke: Analysis|plainurl=yes}}}}
Baris 187:
* {{citation|last = Kneser|first = Martin|year = 1981|title = Ergänzung zu einer Arbeit von Hellmuth Kneser über den Fundamentalsatz der Algebra|url = http://www-gdz.sub.uni-goettingen.de/cgi-bin/digbib.cgi?PPN266833020_0177|periodical = Mathematische Zeitschrift|volume = 177|pages = 285–287|issn = 0025-5874|doi = 10.1007/BF01214206|issue = 2}} (tr. An extension of a work of [[Hellmuth Kneser]] on the Fundamental Theorem of Algebra).
* {{citation|last = Ostrowski|first = Alexander | author-link = Alexander Ostrowski | year = 1920 | chapter = Über den ersten und vierten Gaußschen Beweis des Fundamental-Satzes der Algebra | title = Carl Friedrich Gauss ''Werke'' Band X Abt. 2 | chapter-url = http://gdz.sub.uni-goettingen.de/dms/load/img/?PPN=PPN236019856&DMDID=dmdlog53}} (tr. On the first and fourth Gaussian proofs of the Fundamental Theorem of Algebra).
* {{cite conference|last=Weierstraß|first=
===Recent literature===
|