Protein: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.8
InternetArchiveBot (bicara | kontrib)
Rescuing 0 sources and tagging 12 as dead.) #IABot (v2.0.8
Baris 18:
 
Kesulitan dalam memurnikan protein dalam jumlah besar membuat para ahli biokimia protein awal sangat sulit mempelajarinya. Oleh karena itu, penelitian awal difokuskan pada protein yang dapat dimurnikan dalam jumlah besar, misalnya dari darah, putih telur, berbagai racun, dan enzim pencernaan/metabolik yang diperoleh dari rumah pemotongan hewan. Pada 1950-an, [[Armor dan Perusahaan|Armor Hot Dog Co.]] memurnikan 1&nbsp;kg [[Ribonuclease A|ribonuklease A]] dari pankreas sapi murni dan menyediakannya secara gratis bagi para ilmuwan; gerakan ini membantu ribonuklease A menjadi target utama studi biokimia selama beberapa dekade berikutnya.<ref name="Perrett2007" />
[[Berkas:KendrewMyoglobin.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:KendrewMyoglobin.jpg|jmpl|{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }}[[John Kendrew]] dengan model mioglobin yang sedang diproses]]
[[Linus Carl Pauling|Linus Pauling]] dianggap sukses dalam memperkirakan [[struktur sekunder]] protein biasa berdasarkan [[ikatan hidrogen]], sebuah ide yang pertama kali dikemukakan oleh [[William Astbury]] pada tahun 1933.<ref name="Pauling1951">{{cite journal|date=May 1951|title=Atomic coordinates and structure factors for two helical configurations of polypeptide chains|url=http://www.pnas.org/site/misc/Protein8.pdf|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=37|issue=5|pages=235–40|bibcode=1951PNAS...37..235P|doi=10.1073/pnas.37.5.235|pmc=1063348|pmid=14834145|archive-url=https://web.archive.org/web/20121128101620/http://www.pnas.org/site/misc/Protein8.pdf|archive-date=2012-11-28|access-date=2009-04-14|vauthors=Pauling L, Corey RB|url-status=live}}</ref> Belakangan, karya [[Walter Kauzmann]] tentang [[denaturasi]],<ref name="Kauzmann1956">{{cite journal|date=May 1956|title=Structural factors in protein denaturation|journal=Journal of Cellular Physiology|volume=47|issue=Suppl 1|pages=113–31|doi=10.1002/jcp.1030470410|pmid=13332017|vauthors=Kauzmann W}}</ref><ref name="Kauzmann1959">{{Cite book|vauthors=Kauzmann W|year=1959|title=Advances in Protein Chemistry Volume 14|isbn=978-0-12-034214-3|series=Advances in Protein Chemistry|volume=14|pages=1–63|chapter=Some factors in the interpretation of protein denaturation|doi=10.1016/S0065-3233(08)60608-7|pmid=14404936}}</ref> yang sebagian didasarkan pada penelitian sebelumnya oleh [[Kaj Ulrik Linderstrøm-Lang|Kaj Linderstrøm-Lang]],<ref name="Kalman1955">{{cite journal|date=February 1955|title=Degradation of ribonuclease by subtilisin|journal=Biochimica et Biophysica Acta|volume=16|issue=2|pages=297–99|doi=10.1016/0006-3002(55)90224-9|pmid=14363272|vauthors=Kalman SM, Linderstrøm-Lang K, Ottesen M, Richards FM}}</ref> memberi pemahaman tentang [[pelipatan protein]] dan struktur yang dimediasi oleh [[Inti hidrofobik|interaksi hidrofobik]].
 
Baris 29:
 
== Biokimia ==
{{Main|Biokimia|asam amino|ikatan peptida}}[[Berkas:Peptide-Figure-Revised.png|pra=https://wiki-indonesia.club/wiki/Berkas:Peptide-Figure-Revised.png|jmpl|Struktur{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} kimia ikatan peptida (bawah) dan struktur tiga dimensi ikatan peptida antara [[Alanina|alanin]] dan asam amino yang berdekatan (atas/sisipan). Ikatan itu sendiri terbuat dari elemen [[CHON]].]]
[[Berkas:Peptide_group_resonance.png|pra=https://wiki-indonesia.club/wiki/Berkas:Peptide_group_resonance.png|jmpl|Struktur{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} [[Resonansi (kimia)|resonansi]] dari [[ikatan peptida]] yang menghubungkan asam amino individual untuk membentuk [[polimer]] protein]]
Protein merupakan [[biomolekul]] yang sangat besar atau makrobiopolimer yang tersusun dari [[monomer]] berupa asam amino. Ada 20 asam amino standar yang membentuk asam amino (disebut [[asam amino proteinogenik]]); masing-masing terdiri dari sebuah [[karbon alfa]] yang berikatan dengan sebuah gugus [[Amina|amino]] (–NH<sub>2</sub>), sebuah gugus [[Asam alkanoat|karboksil]] (–COOH), sebuah atom hidrogen (H), dan rantai samping (disebut sebagai "R"). Gugus "R" inilah yang menjadikan setiap asam amino berbeda dan sifat rantai samping ini akan memengaruhi keseluruhan suatu protein. Hanya [[prolina]] yang berbeda dari struktur dasar ini karena mengandung cincin yang tidak biasa pada gugus amina ujung-N, yang memaksa gugus amida CO–NH menjadi konformasi tetap.<ref name="Nelson2005">{{cite book|vauthors=Nelson DL, Cox MM|year=2005|title=Lehninger's Principles of Biochemistry|location=New York, New York|publisher=W. H. Freeman and Company|edition=4}}</ref> Rantai samping asam amino standar, yang dirinci dalam [[daftar asam amino standar]], memiliki beragam struktur dan sifat kimiawi. Struktur tiga dimensi dan reaktivitas kimia suatu protein ditentukan oleh efek gabungan dari semua rantai samping asam amino dalam protein tersebut.<ref name="Gutteridge2005">{{cite journal|date=November 2005|title=Understanding nature's catalytic toolkit|journal=Trends in Biochemical Sciences|volume=30|issue=11|pages=622–29|doi=10.1016/j.tibs.2005.09.006|pmid=16214343|vauthors=Gutteridge A, Thornton JM}}</ref> Semua asam amino dalam rantai polipeptida saling terhubung oleh [[ikatan peptida]] melalui [[Reaksi dehidrasi|sintesis dehidrasi]]. Setelah terhubung dalam rantai protein, asam amino individual disebut ''residu,'' sedangkan rangkaian atom karbon, nitrogen, dan oksigen yang terkait disebut ''rantai utama'' atau ''tulang punggung protein.''<ref>Murray ''et al''., p. 19.</ref>
 
Baris 44:
 
=== Biosintesis ===
[[Berkas:Ribosome_mRNA_translation_en.svg|pra=https://wiki-indonesia.club/wiki/Berkas:Ribosome_mRNA_translation_en.svg|jmpl|Ribosom{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} menghasilkan protein menggunakan mRNA sebagai templat]]
[[Berkas:Genetic_code.svg|pra=https://wiki-indonesia.club/wiki/Berkas:Genetic_code.svg|jmpl|Urutan{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} [[Asam deoksiribonukleat|DNA]] dari sebuah gen [[Kodon|menyandi]] urutan asam amino dari sebuah protein]]{{Main|Sintesis protein}}
Protein dirakit dari sejumlah asam amino menggunakan informasi yang disandi dalam gen. Setiap protein memiliki urutan asam amino uniknya sendiri yang ditentukan oleh urutan [[nukleotida]] dari gen yang menyandi protein ini. [[Kodon|Kode genetik]] adalah satu set berupa tiga nukleotida yang disebut [[kodon]] dan setiap kombinasi tiga nukleotida menunjukkan asam amino, misalnya AUG ([[adenina]]–[[urasil]]–[[guanina]]) adalah kode untuk [[Metionina|metionin]]. Karena DNA mengandung empat nukleotida, jumlah total kodon yang mungkin adalah 64; oleh karena itu, terdapat beberapa redundansi dalam kode genetik, dengan beberapa asam amino ditentukan oleh lebih dari satu kodon.<ref name="vanHolde1996">van Holde and Mathews, pp. 1002–42.</ref> Gen yang disandi dalam DNA pertama-tama [[Transkripsi (genetik)|ditranskripsikan]] menjadi pra-[[RNA duta]] (mRNA) oleh protein seperti [[RNA polimerase]]. Kebanyakan organisme kemudian memproses pra-mRNA (juga dikenal sebagai ''transkrip primer'') menggunakan berbagai bentuk [[modifikasi pascatranskripsi]] untuk membentuk mRNA yang matang, yang kemudian digunakan sebagai templat untuk sintesis protein oleh [[ribosom]]. Pada [[prokariota]], mRNA dapat digunakan segera setelah diproduksi atau diikat oleh ribosom setelah menjauh dari [[nukleoid]]. Sebaliknya, [[eukariota]] membuat mRNA di [[inti sel]] dan kemudian [[Translokasi protein|mentranslokasikannya]] melewati [[membran inti]] ke dalam [[sitoplasma]], tempat [[sintesis protein]] kemudian terjadi. Tingkat sintesis protein pada prokariota lebih tinggi daripada eukariota dan dapat mencapai hingga 20 asam amino per detik.<ref name="Pain2000">{{cite book|vauthors=Dobson CM|year=2000|title=Mechanisms of Protein Folding|location=Oxford, Oxfordshire|publisher=Oxford University Press|isbn=978-0-19-963789-8|veditors=Pain RH|pages=1–28|chapter=The nature and significance of protein folding}}</ref>
 
Baris 57:
== Struktur ==
{{Main|Struktur protein}}
[[Berkas:Chaperonin_1AON.png|pra=https://wiki-indonesia.club/wiki/Berkas:Chaperonin_1AON.png|ka|jmpl|Struktur{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} kristal dari [[protein pendamping]] yang merupakan kompleks protein yang sangat besar. Fungsinya untuk membantu pelipatan protein. Bagian yang diberi perbedaan warna merupakan subunit protein tunggal.]]
[[Berkas:Proteinviews-1tim.png|pra=https://wiki-indonesia.club/wiki/Berkas:Proteinviews-1tim.png|jmpl|Tiga{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} kemungkinan representasi dari struktur tiga dimensi protein isomerase fosfat triosa. '''Kiri''': Representasi semua atom yang diwarnai oleh jenis atom. '''Tengah:''' Representasi sederhana yang menggambarkan konformasi tulang punggung, diwarnai oleh struktur sekunder. '''Kanan''': Representasi permukaan yang dapat diakses pelarut yang diwarnai oleh jenis residu (residu asam merah, residu basa biru, residu polar hijau, residu nonpolar putih).]]
Sebagian besar&nbsp;protein [[Pelipatan protein|terlipat]] menjadi struktur tiga dimensi yang unik. Bentuk alami suatu protein yang melipat dikenal dengan istilah [[konformasi asli]].<ref>Murray ''et al''., p. 36.</ref> Meskipun banyak protein dapat melipat tanpa bantuan dam hanya melalui sifat-sifat kimiawi asam amino mereka, sejumlah protein lain memerlukan bantuan [[Pendamping (protein)|protein pendamping]] untuk melipat menjadi kondisi aslinya.<ref>Murray ''et al''., p. 37.</ref> Ahli biokimia sering merujuk pada empat aspek berbeda dari struktur protein.<ref>Murray ''et al''., pp. 30–34.</ref>
* Struktur primer, merupakan urutan asam amino yang dihubungkan melalui [[ikatan peptida]] ([[amida]]). [[Frederick Sanger]] merupakan ilmuwan yang berjasa dengan temuan metode penentuan deret asam amino pada protein, dengan penggunaan beberapa enzim [[protease]] yang mengiris ikatan antara asam amino tertentu menjadi fragmen peptida yang lebih pendek untuk dipisahkan lebih lanjut dengan bantuan kertas kromatografik. Urutan asam amino menentukan fungsi protein, pada tahun 1957, [[Vernon Ingram]] menemukan bahwa translokasi asam amino akan mengubah fungsi protein, dan lebih lanjut memicu [[mutasi]] genetik.
Baris 75:
 
Protein bukanlah molekul yang sepenuhnya kaku. Selain tingkat struktur ini, protein dapat berubah di antara beberapa struktur terkait saat mereka menjalankan fungsinya. Dalam konteks penataan ulang fungsional ini, struktur tersier atau kuaterner biasanya disebut sebagai "[[Isomerisme konformasi|konformasi]]", dan transisi di antara keduanya disebut ''perubahan konformasi.'' Perubahan tersebut sering kali disebabkan oleh pengikatan molekul [[Substrat (kimia)|substrat]] ke [[situs aktif]] enzim, atau wilayah fisik protein yang berpartisipasi dalam katalisis kimia. Dalam larutan, protein juga mengalami variasi struktur melalui getaran termal dan tumbukan dengan molekul lain.<ref>van Holde and Mathews, pp. 368–75.</ref>
[[Berkas:Protein_composite.png|pra=https://wiki-indonesia.club/wiki/Berkas:Protein_composite.png|jmpl|Permukaan{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} molekul beberapa protein menunjukkan ukuran komparatifnya. Dari kiri ke kanan: [[Antibodi G|imunoglobulin G]] (IgG, [[antibodi]]), [[hemoglobin]], [[insulin]] (hormon), [[Adenilat kinase|kinase adenilat]] (enzim), dan [[glutamin sintetase]] (enzim).]]
Secara informal, protein dapat dibagi menjadi tiga kelas utama yang berkorelasi dengan struktur tersier yang khas: [[Protein Globular|protein globular]], [[protein berserat]], dan [[protein membran]]. Hampir semua protein globular dapat [[Kelarutan|larut]] dan banyak di antaranya adalah enzim. Protein berserat sering kali bersifat struktural, seperti [[kolagen]] (komponen utama jaringan ikat) atau [[keratin]] (komponen protein rambut dan kuku). Protein membran sering berfungsi sebagai [[Reseptor (biokimia)|reseptor]] atau menyediakan saluran untuk molekul polar atau bermuatan untuk melewati [[membran sel]].<ref>van Holde and Mathews, pp. 165–85.</ref>
 
Baris 87:
 
== Fungsi seluler ==
Protein adalah aktor utama di dalam sel, yang menjalankan tugas yang ditentukan oleh informasi yang disandi dalam gen.<ref name="Lodish2004">{{cite book|vauthors=Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipurksy SL, Darnell J|year=2004|title=Molecular Cell Biology|location=New York, New York|publisher=WH Freeman and Company|edition=5th}}</ref> Dengan pengecualian jenis [[RNA (molekul)|RNA]] tertentu, sebagian besar molekul biologis lainnya adalah elemen yang relatif lembam dan dijadikan tempat protein bekerja. Protein menyusun setengah dari berat kering sel ''[[Escherichia coli]]'', sedangkan makromolekul lain seperti DNA dan RNA masing-masing hanya berkontribusi sebesar 3% dan 20%.<ref name="Voet">Voet D, Voet JG. (2004). ''Biochemistry'' Vol 1 3rd ed. Wiley: Hoboken, NJ.</ref> Kumpulan protein yang diekspresikan dalam sel atau jenis sel tertentu dikenal sebagai [[Proteome|proteoma]].[[Berkas:Hexokinase_ball_and_stick_model,_with_substrates_to_scale_copy.png|pra=https://wiki-indonesia.club/wiki/Berkas:Hexokinase_ball_and_stick_model,_with_substrates_to_scale_copy.png|ka|jmpl|Enzim{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} [[Hexokinase|heksokinase]] ditampilkan sebagai model molekul bola-dan-tongkat konvensional. Skala di pojok kanan atas adalah dua substratnya, yaitu [[Adenosina trifosfat|ATP]] dan [[glukosa]].]]Karakteristik utama protein yang juga memungkinkan beragam fungsi mereka adalah kemampuannya untuk mengikat molekul lain secara spesifik dan erat. Area protein yang bertanggung jawab untuk mengikat molekul lain dikenal sebagai [[situs pengikatan]] dan sering kali berupa cekungan atau "kantong" pada permukaan molekul. Kemampuan mengikat ini dimediasi oleh struktur tersier dari protein yang menentukan kantong situs pengikatan, dan oleh sifat kimiawi rantai samping asam amino di sekitarnya. Pengikatan protein bisa sangat ketat dan spesifik; sebagai contoh, protein [[penghambat ribonuklease]] berikatan dengan [[angiogenin]] manusia dengan [[konstanta disosiasi]] subfemtomolar (<10<sup>−15</sup> M) tetapi tidak mengikat sama sekali dengan homolognya pada amfibi, yaitu [[onkonase]] (>1 M). Perubahan kimiawi yang sangat kecil seperti penambahan satu gugus metil ke pasangan-ikatan terkadang cukup untuk hampir menghilangkan pengikatan; misalnya enzim [[sintetase aminoasil-tRNA]] yang spesifik untuk asam amino [[Valina|valin]], tidak mengikat rantai samping asam amino [[Isoleusina|isoleusin]] yang sangat mirip.<ref name="Sankaranarayanan2001">{{cite journal|year=2001|title=The fidelity of the translation of the genetic code|journal=Acta Biochimica Polonica|volume=48|issue=2|pages=323–35|doi=10.18388/abp.2001_3918|pmid=11732604|vauthors=Sankaranarayanan R, Moras D|doi-access=free}}</ref>
 
Protein dapat mengikat protein lain dan juga mengikat substrat [[molekul kecil]]. Ketika protein mengikat secara spesifik dengan salinan lain dari molekul yang sama, mereka dapat mengalami [[Oligomer|oligomerisasi]] untuk membentuk fibril; proses ini sering terjadi pada protein struktural yang terdiri dari monomer globular yang berikatan-sendiri untuk membentuk serat yang kaku. [[Interaksi protein-protein]] juga mengatur aktivitas enzimatik, mengendalikan perkembangan melalui [[siklus sel]], dan memungkinkan perakitan [[kompleks protein]] besar yang melakukan banyak reaksi-terkait-serupa dengan fungsi biologis yang sama. Protein juga dapat mengikat atau bahkan diintegrasikan ke dalam membran sel. Kemampuan pasangan-ikatan untuk menginduksi perubahan konformasi protein memungkinkan pembangunan jaringan [[Persinyalan sel|pensinyalan]] yang sangat kompleks.<ref>van Holde dan Mathews, pp. 830–49.</ref> Karena interaksi di antara protein bersifat reversibel dan sangat bergantung pada ketersediaan pasangan protein untuk membentuk agregat yang mampu melakukan rangkaian fungsi yang berbeda, studi tentang interaksi di antara protein tertentu adalah kunci untuk memahami aspek penting fungsi seluler, dan akhirnya sifat-sifat yang membedakan tipe sel tertentu.<ref name="Copland2009">{{cite journal|date=June 2009|title=Sex steroid receptors in skeletal differentiation and epithelial neoplasia: is tissue-specific intervention possible?|journal=BioEssays|volume=31|issue=6|pages=629–41|doi=10.1002/bies.200800138|pmid=19382224|vauthors=Copland JA, Sheffield-Moore M, Koldzic-Zivanovic N, Gentry S, Lamprou G, Tzortzatou-Stathopoulou F, Zoumpourlis V, Urban RJ, Vlahopoulos SA|s2cid=205469320}}</ref><ref name="Samarin2009">{{cite journal|date=January 2009|title=Regulation of epithelial apical junctional complex by Rho family GTPases|journal=Frontiers in Bioscience|volume=14|issue=14|pages=1129–42|doi=10.2741/3298|pmid=19273120|vauthors=Samarin S, Nusrat A}}</ref>
Baris 100:
 
=== Pensinyalan sel dan pengikatan ligan ===
[[Berkas:Mouse_cholera_antibody.png|pra=https://wiki-indonesia.club/wiki/Berkas:Mouse_cholera_antibody.png|jmpl|{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }}[[Diagram pita]] dari sebuah antibodi tikus yang berikatan dengan antigen bakteri penyebab [[kolera]] berupa [[karbohidrat]]]]
Banyak protein terlibat dalam proses [[Persinyalan sel|pensinyalan sel]] dan [[transduksi sinyal]]. Beberapa protein, seperti [[insulin]], merupakan protein ekstraseluler yang mengirimkan sinyal dari sel tempat mereka disintesis (yaitu sel pankreas) ke sel lain di [[jaringan]] yang jauh. Jenis lainnya adalah [[protein membran]] yang bertindak sebagai [[Reseptor (biokimia)|reseptor]] yang fungsi utamanya adalah mengikat molekul pemberi sinyal dan menginduksi respons biokimia di dalam sel. Banyak reseptor memiliki situs pengikatan yang terekspos pada permukaan sel dan domain efektor di dalam sel, yang mungkin memiliki aktivitas enzimatik atau mungkin mengalami [[Perubahan konformasional|perubahan konformasi]] yang dideteksi oleh protein lain di dalam sel.<ref>Branden dan Tooze, pp. 251–281.</ref>
 
Baris 123:
 
=== Lokalisasi seluler ===
[[Berkas:Localisations02eng.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:Localisations02eng.jpg|ka|jmpl|Protein{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} dalam [[Kompartemen seluler|kompartemen]] dan struktur seluler yang berbeda ditandai dengan [[protein berpendar hijau]] (di gambar ini berwarna putih)]]
Studi tentang protein ''in vivo'' sering kali berkaitan dengan sintesis dan lokalisasi protein di dalam sel. Meskipun banyak protein intraseluler disintesis dalam [[sitoplasma]] dan protein-terikat-membran atau protein-tersekresi di [[retikulum endoplasma]] (RE), cara spesifik tentang bagaimana protein [[Penargetan protein|ditargetkan]] ke organel atau struktur seluler tertentu sering kali tidak jelas. Teknik yang berguna untuk menilai lokalisasi seluler adalah menggunakan rekayasa genetika untuk mengekspresikan di dalam sel, suatu [[protein fusi]] atau [[Kimera (protein)|kimera]] yang terdiri dari protein alami yang diinginkan yang dihubungkan dengan "[[Gen reporter|pelapor]]" seperti [[protein berpendar hijau]] (GFP).<ref name="Stepanenko2008">{{cite journal|date=August 2008|title=Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes|journal=Current Protein & Peptide Science|volume=9|issue=4|pages=338–69|doi=10.2174/138920308785132668|pmc=2904242|pmid=18691124|vauthors=Stepanenko OV, Verkhusha VV, Kuznetsova IM, Uversky VN, Turoverov KK}}</ref> Posisi protein yang menyatu di dalam sel dapat divisualisasikan dengan bersih dan efisien menggunakan mikroskop, seperti yang ditunjukkan pada gambar.<ref name="Yuste2005">{{cite journal|date=December 2005|title=Fluorescence microscopy today|journal=Nature Methods|volume=2|issue=12|pages=902–4|doi=10.1038/nmeth1205-902|pmid=16299474|vauthors=Yuste R|s2cid=205418407}}</ref>
 
Baris 148:
 
=== Prediksi dan simulasi struktur ===
[[Berkas:225_Peptide_Bond-01.jpg|pra=https://wiki-indonesia.club/wiki/Berkas:225_Peptide_Bond-01.jpg|ka|jmpl|Asam{{Pranala mati|date=Mei 2021 |bot=InternetArchiveBot |fix-attempted=yes }} amino-asam amino penyusun dapat dianalisis untuk memprediksi struktur protein sekunder, tersier, dan kuaterner, dalam hal ini hemoglobin yang mengandung unit [[heme]].]]
Untuk melengkapi bidang genomika struktural, ''prediksi struktur protein'' mengembangkan [[model matematika]] protein yang efisien untuk memprediksi formasi molekul secara komputasi dalam teori, alih-alih mendeteksi struktur dengan observasi laboratorium.<ref name="Zhang2008">{{cite journal|date=June 2008|title=Progress and challenges in protein structure prediction|journal=Current Opinion in Structural Biology|volume=18|issue=3|pages=342–48|doi=10.1016/j.sbi.2008.02.004|pmc=2680823|pmid=18436442|vauthors=Zhang Y}}</ref> Jenis prediksi struktur yang paling berhasil, yang dikenal sebagai [[pemodelan homologi]], bergantung pada keberadaan struktur "templat" dengan kemiripan urutan terhadap protein yang dimodelkan; tujuan genomika struktural adalah memberikan representasi yang memadai dari struktur yang terselesaikan untuk memodelkan sebagian besar struktur yang tersisa.<ref name="Xiang2006">{{cite journal|date=June 2006|title=Advances in homology protein structure modeling|journal=Current Protein & Peptide Science|volume=7|issue=3|pages=217–27|doi=10.2174/138920306777452312|pmc=1839925|pmid=16787261|vauthors=Xiang Z}}</ref> Meskipun menghasilkan model yang akurat tetap menjadi tantangan ketika yang tersedia hanyalah struktur templat yang berkaitan jauh, disimpulkan bahwa [[Pensejajaran Sekuens|penyelarasan urutan]] adalah penghambat dalam proses ini karena model yang cukup akurat dapat dihasilkan jika penyelarasan urutan yang "sempurna" diketahui.<ref name="Zhang2005">{{cite journal|date=January 2005|title=The protein structure prediction problem could be solved using the current PDB library|journal=Proceedings of the National Academy of Sciences of the United States of America|volume=102|issue=4|pages=1029–34|bibcode=2005PNAS..102.1029Z|doi=10.1073/pnas.0407152101|pmc=545829|pmid=15653774|vauthors=Zhang Y, Skolnick J}}</ref> Banyak metode prediksi struktur telah menyediakan informasi bagi bidang [[rekayasa protein]], yang baru-baru ini muncul, ketika lipatan protein yang baru telah dirancang.<ref name="Kuhlman2003">{{cite journal|date=November 2003|title=Design of a novel globular protein fold with atomic-level accuracy|journal=Science|volume=302|issue=5649|pages=1364–68|bibcode=2003Sci...302.1364K|doi=10.1126/science.1089427|pmid=14631033|vauthors=Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D|s2cid=1939390}}</ref> Masalah komputasi yang lebih kompleks yaitu prediksi interaksi antarmolekul, seperti dalam [[Docking (molekuler)|perkaitan molekuler]] dan [[prediksi interaksi protein-protein]].<ref name="Ritchie2008">{{cite journal|date=February 2008|title=Recent progress and future directions in protein-protein docking|journal=Current Protein & Peptide Science|volume=9|issue=1|pages=1–15|doi=10.2174/138920308783565741|pmid=18336319|vauthors=Ritchie DW|citeseerx=10.1.1.211.4946}}</ref>