Optimisasi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Menambahkan terjemahan dari en:Mathematical_optimization (oldid 1048147756), dengan sebagian besar konten awal dilebur ke subbagian "Masalah optimisasi" dan "Notasi". Menghapus templat math-stub.
k Mengalihkan pemrograman linear ke program linear
Baris 12:
:''Dicari:'' sebuah elemen <math>\mathbf{x}_0 \in A</math> yang memenuhi <math>f(\mathbf{x}_0) \leq f(\mathbf{x})</math> untuk setiap <math>\mathbf{x} \in A</math> (masalah minimisasi), atau yang memenuhi <math>f(\mathbf{x}_0) \geq f(\mathbf{x})</math> untuk setiap <math>\mathbf{x} \in A</math> (masalah maksimisasi)
 
Formulasi tersebut juga disebut dengan '''masalah pemrograman matematika'''. Terminologi ini yang tidak berhubungan langsung dengan [[Pemrograman Komputer|pemrograman komputer]], namun masih digunakan di beberapa hal seperti [[Program linear|pemrograman linear]]. Banyak masalah nyata (''real-world problem'') maupun masalah teoritis dapat dimodelkan dalam kerangka umum tersebut.
 
Perhatikan bahwa hubungan <math>f\left(\mathbf{x}_{0}\right)\geq f\left(\mathbf{x}\right) \Leftrightarrow \tilde{f}\left(\mathbf{x}_{0}\right)\leq \tilde{f}\left(\mathbf{x}\right)</math> terpenuhi jika kita mendefinisikan <math>\tilde{f}\left(\mathbf{x}\right) := - f\left(\mathbf{x}\right),\, \tilde{f}\, :\, A \rightarrow \mathbb{R}</math>. Hal ini yang mengartikan setiap masalah maksimisasi dapat diubah menjadi masalah minimisasi (dan sebaliknya). Dalam matematika, masalah optimisasi umumnya dinyatakan sebagai masalah minimisasi. Di bidang [[fisika]], formulasi seperti ini dapat merujuk pada teknik ''minimisasi [[energi]]'', dengan nilai fungsi <math>f</math> merepresentasikan energi dari [[sistem]] yang dimodelkan. Dalam [[pemelajaran mesin]], penting untuk mengevaluasi kualitas parameter data menggunakan [[Fungsi kerugian|fungsi biaya]], dengan nilai fungsi yang minimum mengimplikasikan kemungkinan parameter dengan nilai optimal (terkecil).
Baris 46:
 
== Sejarah ==
[[Pierre de Fermat|Fermat]] dan [[Joseph Louis Lagrange|Lagrange]] menemukan formula untuk mengidentifikasi nilai optimal, yang berdasar pada [[kalkulus]]. Sementara itu, [[Isaac Newton|Newton]] dan [[Carl Friedrich Gauss|Gauss]] mengusulkan metode iteratif yang mengubah nilai feasibel ke arah nilai optimal. [[George Dantzig|George B. Dantzig]] mencetuskan istilah "[[program linear|pemrograman linear]]" untuk menyelesaikan beberapa kasus optimisasi,walau sebagian teori sudah diperkenalkan oleh [[Leonid Kantorovich]] pada tahun 1939. Kata "pemrograman" dalam konteks ini tidak merujuk pada "[[Pemrograman|pemrogramam komputer]]", namun merujuk pada penggunaan ''program'' oleh pihak militer Amerika Serikat untuk menyebut proposal pelatihan dan jadwal; masalah-masalah yang dipelajari oleh Dantzig pada waktu itu. Pada tahun 1947, Dantzig mempublikasikan [[algoritma simplex]], sedangkan [[John von Neumann]] mengembangkan teori [[Pemrogramanprogram linear|dualitas]].{{citation needed|date=January 2020}} Beberapa peneliti lain yang terkenal dalam bidang optimisasi adalah:{{Div col|colwidth=20em}}
* [[Richard Bellman]]
* [[Roger Fletcher (mathematician)|Roger Fletcher]]