Bilangan alef: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
k +{{Authority control}} |
Dedhert.Jr (bicara | kontrib) |
||
Baris 36:
'''ω<sub>1</sub>''' is actually a useful concept, if somewhat exotic-sounding. An example application is "closing" with respect to countable operations; e.g., trying to explicitly describe the [[sigma-algebra|σ-algebra]] generated by an arbitrary collection of subsets (see e. g. [[Borel hierarchy]]). This is harder than most explicit descriptions of "generation" in algebra ([[vector space]]s, [[group theory|group]]s, etc.) because in those cases we only have to close with respect to finite operations—sums, products, and the like. The process involves defining, for each countable ordinal, via [[transfinite induction]], a set by "throwing in" all possible countable unions and complements, and taking the union of all that over all of '''ω<sub>1</sub>'''.
-->
== Hipotesis
{{main|
{{see also|
[[Kardinalitas]] suatu himpunan [[bilangan real]] ([[:en:cardinality of the continuum|kardinalitas continuum]]) adalah <math>2^{\aleph_0}</math>. Tidak dapat ditentukan dari ZFC ([[:en:Zermelo–Fraenkel set theory|teori himpunan Zermelo-Fraenkel]] dengan [[:en:axiom of choice|aksioma pilihan]]) di mana bilangan ini tepat masuk dalam hierarki bilangan alef, tetapi menuruti ZFC bahwa hipotesis
:<math>2^{\aleph_0}=\aleph_1.</math>
|