Pengguna:Klasüo/bak pasir: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Klasüo (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Klasüo (bicara | kontrib)
Perubahan dan tambahan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan
Baris 13:
{{Use dmy dates|date=Juni 2020}}
{{Lead too long|date=Oktober 2021}}
{{Infobox mathematical function
|name=Logaritma
|image=Logarithms.svg
|imagesize=240px
|domain=<math> (0,\infty) </math>
|kodomain=<math> (-\infty,\infty) </math>
|plusinf=<math> \infty </math>
|root=<math> 1 </math>
|max=Tidak ada
|min=Tidak ada
|inverse=<math> x = b^y </math>
|derivative=<math> \frac{1}{x \ln b} </math>
|antiderivative=<math> x \log_b x - \frac{x}{\ln b} + C </math>
}}
[[Berkas:Logarithm plots.png|right|thumb|upright=1.35|Plot fungsi logaritma, dengan tiga basis yang umum digunakan. Titik-titik khusus {{math|log<sub>''b''</sub> ''b'' {{=}} 1}} ditandai dengan garis bertitik-titik, dan semua irisan kurva pada {{math|1=log<sub>''b''</sub>&thinsp;1 = 0}}.]]
{{Operasi aritmetika}}
In [[mathematics]], the '''logarithm''' is the [[inverse function]] to [[exponentiation]]. That means the logarithm of a given number&nbsp;{{mvar|x}} is the [[exponent]] to which another fixed number, the ''[[base (exponentiation)|base]]''&nbsp;{{mvar|b}}, must be raised, to produce that number&nbsp;{{mvar|x}}. In the simplest case, the logarithm counts the number of occurrences of the same factor in repeated multiplication; e.g. since {{math|1000 {{=}} 10 × 10 × 10 {{=}} 10<sup>3</sup>}}, the "logarithm base&nbsp;10" of 1000 is 3, or {{math|log<sub>10</sub>&thinsp;(1000) {{=}} 3}}. The logarithm of {{mvar|x}} to ''base''&nbsp;{{mvar|b}} is denoted as {{math|log<sub>''b''</sub>&thinsp;(''x'')}}, or without parentheses, {{math|log<sub>''b''</sub>&thinsp;''x''}}, or even without the explicit base, {{math|log&thinsp;''x''}}, when no confusion is possible, or when the base does not matter such as in [[big O notation]].
 
More generally, exponentiation allows any positive [[real number]] as base to be raised to any real power, always producing a positive result, so {{math|log<sub>''b''</sub>(''x'')}} for any two positive real numbers&nbsp;{{mvar|b}} and&nbsp;{{mvar|x}}, where&nbsp;{{mvar|b}} is not equal to&nbsp;{{math|1}}, is always a unique real number&nbsp;{{mvar|y}}. More explicitly, the defining relation between exponentiation and logarithm is:
 
:<math> \log_b(x) = y \ </math> exactly if <math>\ b^y = x\ </math> and <math>\ x > 0</math> and <math>\ b > 0</math> and <math>\ b \ne 1</math>.
 
For example, {{math|1=log<sub>2</sub>&thinsp;64 = 6}}, as {{math|1=2<sup>6</sup> = 64}}.
 
The logarithm base {{math|10}} (that is {{math|1=''b'' = 10}}) is called the decimal or [[common logarithm]] and is commonly used in science and engineering. The [[natural logarithm]] has the [[e (mathematical constant)|number&nbsp;{{mvar|e}}]] (that is {{math|''b'' ≈ 2.718}}) as its base; its use is widespread in mathematics and [[physics]], because of its simpler [[integral]] and [[derivative]]. The [[binary logarithm]] uses base {{math|2}} (that is {{math|1=''b'' = 2}}) and is frequently used in [[computer science]].