Analisis matematis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Hadithfajri (bicara | kontrib)
Hadithfajri (bicara | kontrib)
Baris 3:
== Sejarah ==
 
Analisis matematis sudah ada sejak awal zaman matematika Yunani kuno. Sebagai contoh, suatu jumlah geometris yang terbatas tersirat dalam [[Paradoks Zeno|paradoks]] [[Zeno dari Elea|Zeno]].<ref name="Stillwell Infinite Series Early Results">{{cite book|last=Stillwell|authorlink=John Stillwell|title=|year=2004|chapter=Infinite Series|pages=170|quote=Infinite series were present in Greek mathematics, [...] There is no question that Zeno's paradox of the dichotomy (Section 4.1), for example, concerns the decomposition of the number 1 into the infinite series <sup>1</sup>⁄<sub>2</sub> + <sup>1</sup>⁄<sub>2</sub><sup>2</sup> + <sup>1</sup>⁄<sub>2</sub><sup>3</sup> + <sup>1</sup>⁄<sub>2</sub><sup>4</sup> + ... and that Archimedes found the area of the parabolic segment (Section 4.4) essentially by summing the infinite series 1 + <sup>1</sup>⁄<sub>4</sub> + <sup>1</sup>⁄<sub>4</sub><sup>2</sup> + <sup>1</sup>⁄<sub>4</sub><sup>3</sup> + ... = <sup>4</sup>⁄<sub>3</sub>. Both these examples are special cases of the result we express as summation of a geometric series}}</ref> Menyusul [[Matematika Yunani|matematikawan Yunani]] seperti [[Eudoksos dari Knidos|Eudoxus]] and [[Archimedes]] menjadikannya lebih eksplisit, tetapi tidak formal, menggunakan konsep [[limit]] dan konvergensi saat mereka menggunakan [[metode penghabis]] untuk menghitung luas bangun datar dan volume bangun ruang.<ref>(Smith, 1958)</ref> Di [[India]], [[matematikawan]] abad ke-12 [[Bhāskara II]] memberi contoh tentang [[turunan]] dan menggunakan seperti yang sekarang dikenal dengan nama [[Teorema Rolle]].
 
Pada abad ke-14, [[Madhava dari Sangamagrama]] mengembangkan [[deret (matematika)|deret tak hingga]], seperti [[deret pangkat]] dan [[Deret Taylor|deret taylor]] sebagai fungsi seperti [[sinus]], [[kosinus]], [[tangen]] dan [[kotangen]]. Disamping pengembangan deret taylor dari [[fungsi trigonometrik]], ia juga mengestimasikan besarnya [[galat]] yang dihasilkan dengan memotong deret dan memberikan perkiraan yang rasional pada sebuah deret tak tak hingga. Pengikutnya di [[mazhab astronomi dan matematika Kerala]] melanjutkan karnyanya hingga abad ke-16.