Sistem dinamis: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Add 1 book for Wikipedia:Pemastian (20211109)) #IABot (v2.0.8.2) (GreenC bot
HsfBot (bicara | kontrib)
k Bot: seringkali → sering kali (bentuk baku)
Baris 16:
Sebelum munculnya [[komputer]], menemukan orbit memerlukan teknik matematika yang canggih dan hanya dapat dilakukan untuk kelas kecil sistem dinamis. Metode numerik yang diterapkan pada mesin komputasi elektronik telah menyederhanakan tugas penentuan orbit sistem dinamik.
 
Untuk sistem dinamis sederhana, mengetahui lintasan seringkalisering kali sudah cukup, tetapi kebanyakan sistem dinamis terlalu rumit untuk dipahami dalam kaitannya dengan lintasan individu. Kesulitan muncul karena:
* Sistem yang dipelajari mungkin hanya diketahui kira-kira parameter sistem mungkin tidak diketahui secara tepat atau istilah mungkin hilang dari persamaan. Perkiraan yang digunakan mempertanyakan validitas atau relevansi solusi numerik. Untuk menjawab pertanyaan-pertanyaan ini, beberapa pengertian tentang stabilitas telah diperkenalkan dalam studi sistem dinamis, seperti [[stabilitas Lyapunov]] atau [[stabilitas struktural]]. Stabilitas sistem dinamis menyiratkan bahwa ada kelas model atau kondisi awal yang lintasannya akan setara. Operasi untuk membandingkan orbit untuk menetapkan [[Hubungan kesetaraan|kesetaraan]] berubah dengan pengertian stabilitas yang berbeda.
* Jenis lintasan mungkin lebih penting daripada satu lintasan tertentu. Beberapa lintasan mungkin periodik, sedangkan yang lain mungkin berjalan melalui banyak keadaan sistem yang berbeda. Aplikasi sering kali memerlukan pencacahan kelas-kelas ini atau memelihara sistem dalam satu kelas. Mengklasifikasikan semua kemungkinan lintasan telah mengarah pada studi kualitatif sistem dinamis, yaitu properti yang tidak berubah di bawah perubahan koordinat. [[Sistem dinamika linear]] dan [[Teorema Poincaré–Bendixson|sistem yang memiliki dua bilangan yang menggambarkan suatu keadaan]] adalah contoh sistem dinamika yang kelas orbitnya mungkin dipahami.