Efek pengacau: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Spuspita (bicara | kontrib)
Spuspita (bicara | kontrib)
Menambah referensi
Baris 3:
== Definisi ==
[[Berkas:Simple Confounding Case.svg|jmpl|Ilustrasi efek perancu (pengacau) sederhana yang mana ''Z'' adalah penyebab dari ''X'' dan ''Y'' .]]
Efek pengacau (confounding) adalah distorsi berupa efek dalam memprediksi hubungan atau asosiasi antara faktor eksposur''eksposure'' dan ''outcome''<ref>{{cite book|last=Lapau|first=Buchari|date=2017|url=https://www.google.co.id/books/edition/Prinsip_Metode_Epidemiologi/l_pDDwAAQBAJ?hl=id&gbpv=1|title=Prinsip & Metode Epidemiologi|place=[[Jakarta]]|publisher=Kencana|isbn=978-602-422-190-4|pages=169|language=id-ID|coauthors=}}</ref> (hasil) sehingga asosiasi sebenarnya tidak tampak atau ditutupi oleh faktor lainnya. Dalam statistik, perancu (juga variabel pengganggu, faktor pengganggu, determinan asing atau variabel pembaur) adalah variabel yang mempengaruhi variabel terikat dan variabel bebas sehingga menyebabkan asosiasi palsu. Pembaur yang dimaksud adalah [[Kausalitas|konsep kausal]] sehingga tidak dapat dijelaskan dalam hal korelasi atau asosiasi. <ref>{{cite book|last=Pearl|first=Judea|date=2009|url=https://id1lib.org/ireader/2780725|title=Causality: Models, Reasoning and Inference|place=[[New York]]|publisher=Cambridge University Press|isbn=9780521895606|pages=|language=en-EN|coauthors=}}</ref> <ref>{{Cite journal|last=VanderWeele|first=T.J.|last2=Shpitser|first2=I.|year=2013|title=On the definition of a confounder|url=https://arxiv.org/pdf/1304.0564.pdf|journal=Annals of Statistics|volume=41|issue=1|pages=196–220|arxiv=1304.0564|doi=10.1214/12-aos1058|pmc=4276366|pmid=25544784|access-date=2021-12-05}}</ref> <ref name="Greenland Pearl Robbins 1999">{{Cite journal|last=Greenland|first=S.|last2=Robins|first2=J. M.|last3=Pearl|first3=J.|year=1999|title=Confounding and Collapsibility in Causal Inference|url=https://cdn1.sph.harvard.edu/wp-content/uploads/sites/343/2013/03/Confounding_and_collapsibility.pdf|journal=Statistical Science|volume=14|issue=1|pages=29–46|doi=10.1214/ss/1009211805|access-date=2021-12-05}}</ref>
 
Confounding juga diartikan sebagai isu yang penting untuk diperhatikan, karena kehadirannya dapat mempengaruhi ''p'' value dan besaran risiko yang dapat menyebabkan kesalahan dalam pengambilan keputusan.<ref name=":0">{{cite journal|last1=Hasmawati|first1=|last2=Anggraeni|first2=Ike|last3=Susanti|first3=Rahmi|date=2019|title=Identifikasi Variabel Confounding Dengan Penerapan Uji Chi Square Mantel Haenszel Pada Hubungan Antenatal Care (ANC) Terhadap BBLR Di Kota Samarinda|url=https://ejournal2.litbang.kemkes.go.id/index.php/kespro/article/download/2069/1346/|journal=Jurnal Kesehatan Reproduksi|volume=10|issue=1|pages=22-23|doi=10.22435/kespro.v10i1.2069.21-31|id=|accessdate=2021-12-05}}</ref>
 
[[Berkas:Comparison confounder mediator.svg|jmpl|Dimana mediator adalah faktor dalam rantai kausal (1), perancu adalah faktor palsu yang secara tidak benar menyiratkan sebab-akibat (2)]]
Pembaur didefinisikan dalam hal model pembangkit data (seperti pada gambar di atas). Misalkan ''X'' suatu variabel bebas, dan ''Y'' suatu variabel terikat . Untuk memperkirakan pengaruh ''X'' terhadap ''Y'', ahli statistik harus menekan pengaruh variabel asing yang mempengaruhi ''X'' dan . Kami mengatakan bahwa ''X'' dan ''Y'' dikacaukan oleh beberapa variabel lain ''Z'' setiap kali ''Z'' secara kausal mempengaruhi ''X'' dan ''Y''.