Efek pengacau: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Spuspita (bicara | kontrib)
Definisi: referensi
Spuspita (bicara | kontrib)
Baris 17:
Pertimbangan seorang peneliti saat mencoba untuk menilai efektivitas obat ''X'' dari data populasi di mana penggunaan obat adalah pilihan pasien. Data menunjukkan bahwa jenis kelamin (''Z'') mempengaruhi pilihan obat pasien serta peluang mereka untuk sembuh (''Y''). Dalam alur cerita ini, jenis kelamin ''Z'' mengacaukan hubungan antara ''X'' dan Y karena ''Z'' adalah penyebab dari ''X'' dan ''Y'':
[[Berkas:Confounding.PNG|pus]]
Berdasarkan persamaan berikut:{{NumBlk|:|<math>P(y \mid \text{do}(x)) \ne P(y \mid x)</math>|{{EquationRef|2}}}}Dikarenakan kuantitas pengamatan mengandung informasi tentang korelasi antara ''X'' dan ''Z'', dan kuantitas intervensi tidak (atau karena ''X'' tidak berkorelasi dengan ''Z'' dalam percobaan acak). Ahli statistik menginginkan estimasi yang tidak bias <math>P(y \mid \text{do}(x))</math>, tetapi dalam kasus di mana hanya data observasional yang tersedia, perkiraan yang tidak bias hanya dapat diperoleh dengan "menyesuaikan" untuk semua faktor pengganggu, yaitu dengan mengkondisikan berbagai nilai dan rerata hasilnya. Dalam kasus pembaur tunggal ''Z'', ini mengarah ke "rumus penyesuaian":<ref name=":3">{{cite journal|last=Pearl|first=Judea|date=2009|title=Causal inference in statistics: An overview|url=https://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf|journal=Statistics Surveys|volume=3|issue=|pages=127|doi=10.1214/09-SS057|id=ISSN 1935-7516|accessdate=2021-12-05}}</ref>{{NumBlk|:|<math>P(y \mid \text{do}(x)) = \sum_{z} P(y \mid x, z) P(z)</math>|{{EquationRef|3}}}}Dengan memberikan perkiraan yang tidak bias untuk efek kausal dari ''X'' pada ''Y''. Rumus penyesuaian yang sama bekerja ketika ada beberapa pembaur khusus. Dalam hal ini, pilihan set ''Z'' variabel yang akan menjamin perkiraan yang tidak bias harus dilakukan dengan hati-hati. Kriteria untuk pilihan variabel yang tepat disebut Pintu Belakang <ref name="Pearl 1993">Pearl, J., (1993). "Aspects of Graphical Models Connected With Causality," ''In Proceedings of the 49th Session of the International Statistical Science Institute,'' pp. 391–401.</ref> <ref>Pearl, J. (2009). Causal Diagrams and the Identification of Causal Effects In ''Causalityname=":3" Models, Reasoning and Inference'' (2nd ed.). New York, NY, USA: Cambridge University Press.</ref> dan mensyaratkan bahwa himpunan ''Z yang'' dipilih "memblokir" (atau memotong) setiap jalan dari ''X'' ke ''Y'' yang diakhiri dengan panah ke X. Himpunan seperti itu disebut "Pintu Belakang dapat diterima" dan mencakup variabel yang bukan merupakan penyebab umum ''X'' dan ''Y'', tetapi hanya proksinya. Kembali ke contoh penggunaan narkoba, karena ''Z'' mematuhi persyaratan Pintu Belakang (yaitu, dikarenakan ia memotong satu jalur Pintu Belakang <math>X \leftarrow Z \rightarrow Y</math> ), rumus penyesuaian Pintu Belakang berlaku:{{NumBlk|:|<math>\begin{align}P(Y = \text{recovered}\mid \text{do}(x = \text{give drug})) = {} & P(Y = \text{recovered}\mid X = \text{give drug}, Z = \text{male}) P(Z = \text{male}) \\ & {} + P(Y = \text{recovered}\mid X = \text{give drug}, Z = \text{female}) P(Z = \text{female})\end{align}</math>|{{EquationRef|4}}}}Jadi, dengan cara ini dokter dapat memprediksi kemungkinan efek pemberian obat dari studi observasional di mana probabilitas bersyarat yang muncul di sisi kanan persamaan dapat diperkirakan dengan regresi.
 
Kembali ke contoh penggunaan narkoba, karena ''Z'' mematuhi persyaratan Pintu Belakang (yaitu, dikarenakan ia memotong satu jalur Pintu Belakang <math>X \leftarrow Z \rightarrow Y</math> ), rumus penyesuaian Pintu Belakang berlaku:{{NumBlk|:|<math>\begin{align}P(Y = \text{recovered}\mid \text{do}(x = \text{give drug})) = {} & P(Y = \text{recovered}\mid X = \text{give drug}, Z = \text{male}) P(Z = \text{male}) \\ & {} + P(Y = \text{recovered}\mid X = \text{give drug}, Z = \text{female}) P(Z = \text{female})\end{align}</math>|{{EquationRef|4}}}}Jadi, dengan cara ini dokter dapat memprediksi kemungkinan efek pemberian obat dari studi observasional di mana probabilitas bersyarat yang muncul di sisi kanan persamaan dapat diperkirakan dengan regresi.
 
Berlawanan dengan kepercayaan umum, menambahkan kovariat ke set penyesuaian ''Z'' dapat menimbulkan bias. Misalnya, pada tandingan yang khas terjadi ketika ''Z'' adalah efek umum dari ''X'' dan ''Y'', <ref>{{Cite journal|last=Lee|first=P. H.|year=2014|title=Should We Adjust for a Confounder if Empirical and Theoretical Criteria Yield Contradictory Results? A Simulation Study|journal=[[Scientific Reports|Sci Rep]]|volume=4|pages=6085|bibcode=2014NatSR...4E6085L|doi=10.1038/srep06085|pmc=5381407|pmid=25124526|access-date=2021-12-05}}</ref> kasus yang mana ''Z'' bukan pembaur. Namun, himpunan nol adalah Pintu belakang dapat diterima sehingga dapat menyesuaikan untuk ''Z'' akan menciptakan bias yang dikenal sebagai " tabrakan bias" atau " [[Paradoks Berkson]]".