Pengguna:Dedhert.Jr/Uji halaman 12: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) |
Dedhert.Jr (bicara | kontrib) |
||
Baris 109:
:{{NumBlk|::|<math> \tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta} </math>|{{EquationRef|2.3}}}}
:{{NumBlk|::|<math> \cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \pm 1}{\cot \beta \pm \cot \alpha} </math>|{{EquationRef|2.4}}}}
Pada rumus-rumus di atas, dapat dibuktikannya secara aljabar dengan cara mengeksploitasikan suatu [[Daftar identitas trigonometri#Refleksi sudut|identitas-identitas sudut komplementer]] tersebut. Secara geometri, diberikan <math>OQA</math> adalah [[segitiga siku-siku]], <math>OQ \bot PQ</math> sehingga <math>OPQ</math> juga merupakan segitiga siku-siku. Gambar garis vertikal dari titik <math>P</math> ke titik <math>B</math>, yang terletak di pertengahan garis <math>OA</math>. Misalkan <math>R</math> adalah titik di garis pertengahan <math>PB</math> (tetapi tidak terletak di pertengahan garis <math>OQ</math> sehingga <math>R</math> bukanlah titik perpotongan pada kedua garis <math>OQ</math> dan <math>PB</math>) sehingga <math>PQR</math> adalah segitiga dengan <math>\angle PRQ</math> adalah siku-siku. Setelah menggambarnya, diperoleh <math>\angle QOA = \angle QPR = \alpha</math>, <math>QR = AB</math>, dan <math>BR = AQ</math>.
=== Sinus ===
Baris 155:
Hal yang serupa untuk membuktikan <math>\cot(\alpha - \beta) = \frac{\cot \alpha \cot \beta + 1}{\cot \beta - \cot \alpha}</math>.
'''Secara geometri''',<ref>{{Cite web|title=Proof of cot(A+B) {{!}} cot(x+y) formula in Geometric Method|url=https://www.mathdoubts.com/cot-angle-sum-identity-proof/|website=www.mathdoubts.com|language=en|access-date=2021-12-11}}</ref> diperoleh bahwa <math>OB = OA - AB</math> dan <math>PB = PR + RB = PR + AQ</math>. Pada segitiga siku-siku <math>OQP</math> dan <math>OAQ</math>, diperoleh <math display="inline">\cot \alpha = \frac{OA}{AQ}</math> dan <math display="inline">\cot \alpha = \frac{PR}{QR}</math> jika dan hanya jika <math>OA = AQ \cot \alpha</math>, dan <math>PR = QR \cot \alpha</math>.
<math>\cot (\alpha + \beta) = \frac{OQ}{QB} = \frac{OA - AB}{PR + AQ} = \frac{AQ \cot \alpha - AB}{QR \cot \alpha + RB} = \frac{QR \left(\frac{AQ}{QR} \cot \alpha - \frac{AB}{QR} \right)}{QR \left(\cot \alpha + \frac{AQ}{QR}\right)} = \frac{\frac{AQ}{QR} \cot \alpha - 1}{\cot \alpha + \frac{AQ}{QR}}</math>
Selanjutnya, <math display="inline">\sin \alpha = \frac{AQ}{OQ}</math> dan <math display="inline">\sin \alpha = \frac{QR}{PR}</math>, maka <math display="inline">\frac{AQ}{OQ} = \frac{QR}{PQ}</math> jika dan hanya jika <math display="inline">\frac{AQ}{QR} = \frac{OQ}{PQ}</math>. Karena <math display="inline">\cot \beta = \frac{OQ}{PQ}</math>, maka
<math>\cot(\alpha + \beta) = \frac{\cot \alpha \cot \beta - 1}{\cot \alpha + \cot \beta}</math>. <math>\blacksquare</math>
=== Bukti melalui geometri ===
|