Aturan sinus: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Mengatur posisi sub-subjudul dan mengganti subjudul "Bunyi Teorema" menjadi "Hubungan dengan lingkaran luar segitiga". Konten dalam edit ini adalah alih bahasa dari artikel Wikipedia Bahasa Inggris en:Law_of_sines (oldid 1059829524); Lihat sejarahnya untuk atribusi. |
Konten dalam edit ini adalah alih bahasa dari artikel Wikipedia Bahasa Inggris en:Law_of_sines (oldid 1059829524); Lihat sejarahnya untuk atribusi. Tag: referensi YouTube VisualEditor |
||
Baris 55:
== Hubungan dengan lingkaran luar segitiga ==
Pada identitas<math display="block"> \frac{a}{\sin{\alpha}} = \frac{b}{\sin{\beta}} = \frac{c}{\sin{\gamma}},</math>ketiga pecahan tersebut memiliki nilai yang sama dengan panjang [[diameter]] dari [[lingkaran luar]] segitiga. Bukti mengenai hal ini dapat ditelusuri sampai ke [[Ptolemy]].<ref>Coxeter, H. S. M. and Greitzer, S. L. ''Geometry Revisited''. Washington, DC: Math. Assoc. Amer., pp. 1–3, 1967</ref><ref name=":02">{{Cite web|title=Law of Sines|url=http://www.pballew.net/lawofsin.html|website=www.pballew.net|access-date=2018-09-18}}</ref>
=== Bukti ===
[[Berkas:Sinelaw_radius_(Greek_angles).svg|jmpl|Membuktikan nilai rasio pada aturan sinus sama dengan panjang diameter lingkaran luar segitiga. Perhatikan bahwa segitiga {{math|''ADB''}} melalui pusat lingkaran yang berdiameter {{math|''d''}}.]]
Seperti terlihat pada gambar, misalkan ada sebuah lingkaran yang memuat segitiga <math> \triangle ABC</math>, dan memuat segitiga lain <math> \triangle ADB</math> yang sisinya melewati pusat lingkaran '''O'''.<ref group="nb">Memuat dalam artian titik-titik sudut segitiga terletak pada lingkaran.</ref> Sudut <math> \angle AOD</math> memiliki [[sudut pusat]] sebesar <math> 180^\circ</math>, sehingga sudut <math> \angle ABD = 90^\circ</math>. Karena <math> \triangle ABD</math> merupakan segitiga siku-siku, berlaku<math display="block"> \sin{\delta}= \frac{\text{sisi lawan}}{\text{hipotenusa}}= \frac{c}{2R},</math>dengan <math> R= \frac{d}{2}</math> adalah radius dari lingkaran yang memuat segitiga.<ref name=":02" /> Sudut <math>{\gamma}</math> dan <math>{\delta}</math> memiliki sudut pusat yang sama, sehingga besar sudut mereka sama: <math>{\gamma} = {\delta}</math>. Maka disimpulkan,<math display="block"> \sin{\delta} = \sin{\gamma} = \frac{c}{2R}.</math>Dengan menyusun kembali suku-suku, dihasilkan<math display="block"> 2R = \frac{c}{\sin{\gamma}}.</math>Proses di atas dapat diulangi dengan membentuk <math> \triangle ADB</math> yang berbeda, sehingga menghasilkan persamaan
{{equation box 1|equation=<math> \frac{a}{\sin{\alpha}} = \frac{b}{\sin{\beta}} = \frac{c}{\sin{\gamma}}=2R.</math>}}
=== Hubungan dengan luas segitiga ===
Menggunakan notasi yang sama dengan bagian sebelumnya, luas dari segitiga <math> \triangle ABC</math> adalah <math display="inline">L = \frac{1}{2}ab \sin \gamma</math>, dengan <math>\gamma</math> adalah sudut yang diapit oleh sisi {{math|''a''}} dan {{math|''b''}}. Mensubtitusi aturan sinus pada persamaan luas segitiga menghasilkan<ref>{{Citation|last=Mr. T's Math Videos|title=Area of a Triangle and Radius of its Circumscribed Circle|date=2015-06-10|url=https://www.youtube.com/watch?v=t6QNGDPG4Og|archive-url=https://ghostarchive.org/varchive/youtube/20211211/t6QNGDPG4Og|archive-date=2021-12-11|url-status=live|access-date=2018-09-18}}{{cbignore}}</ref> <math display="block">L=\frac{1}{2}ab \cdot \frac {c}{2R} = \frac{abc}{4R}. </math>Dapat ditunjukkan bahwa persamaan tersebut mengimplikasikan<math display="block">\begin{align}
\frac{abc} {2L}
& = \frac {2abc} {\sqrt{{(a^2+b^2+c^2)}^2-2(a^4+b^4+c^4) }},▼
\end{align}</math>dengan <math>s</math> adalah [[Semiperimeter|panjang setengah keliling]] segitiga, yakni <math display="inline">s = \frac{a+b+c}{2}.</math> Persamaan ini dapat disederhanakan menjadi [[Teorema Heron|rumus Heron]] untuk menghitung luas segitiga.
Aturan sinus juga dapat digunakan untuk menghasilkan rumus berikut untuk menghitung luas lingkaran. Dengan menyatakan <math display="inline">S =\frac {\sin A + \sin B + \sin C}{2}</math>, dapat ditunjukkan<ref>Mitchell, Douglas W., "A Heron-type area formula in terms of sines," ''Mathematical Gazette'' 93, March 2009, 108–109.</ref>
{{equation box 1|equation=<math>T = 4R^{2} \sqrt{S \left(S - \sin A\right) \left(S - \sin B\right) \left(S - \sin C\right)}</math>}}
== Kasus hiperbolik ==
{{See also|segitiga hiperbolik}}
Dalam [[geometri hiperbolik]] dengan kurvatur bernilai −1, aturan sinus berubah menjadi<math display="block">\frac{\sin A}{\sinh a} = \frac{\sin B}{\sinh b} = \frac{\sin C}{\sinh c} \,.</math>Pada kasus khusus dengan {{math|''B''}} berupa sudut siku-siku, dihasilkan<math display="block">\sin C = \frac{\sinh c}{\sinh b} </math>yang mirip dengan rumus pada geometri Euklides, yang menyatakan sinus sebagai perbandingan panjang sisi berlawanan dengan sisi hipotenusa.
== Pada permukaan bola ==
[[Berkas:Spherical_trigonometry_vectors.svg|ka|jmpl|200x200px|Ilustrasi dari setiap label untuk aturan sinus pada permukaan bola.]]
Aturan sinus pada permukaan bola memberikan hubungan trigonometrik pada segitiga yang sisi-sisinya berupa [[lingkaran besar]].
Misalkan radius dari bola adalah 1. Misalkan pula {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}} adalah panjang dari segmen-segmen lingkaran besar yang menjadi sisi-sisi segitiga. Karena bola berupa bola satuan, panjang {{math|''a''}}, {{math|''b''}}, dan {{math|''c''}} sama dengan besar-besar sudut (dalam radian) dari pusat bola, yang membentuk segmen-segmen lingkaran besar. Misalkan juga {{math|''A''}}, {{math|''B''}}, dan {{math|''C''}} adalah sudut-sudut yang berhadapan dengan masing-masing sisi segitiga. Aturan sinus pada permukaan bola menyatakan bahwa<math display="block">\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}.</math>
== Pada permukaan dengan kurvatur konstan ==
Pada permukaan secara umum, fungsi sinus dapat diperumum sebagai berikut:<math display="block">\sin_K x = x - \frac{K x^3}{3!} + \frac{K^2 x^5}{5!} - \frac{K^3 x^7}{7!} + \cdots.</math>yang nilainya juga bergantung kurvatur {{math|''K''}} di posisi <math>x</math> berada. Aturan sinus pada permukaan kurvatur bernilai konstan {{math|''K''}} menyatakan bahwa<ref name="mathworld" /><math display="block">\frac{\sin A}{\sin_K a} = \frac{\sin B}{\sin_K b} = \frac{\sin C}{\sin_K c} \,.</math>Mensubtitusi nilai {{math|1=''K'' = 0}}, {{math|1=''K'' = 1}}, dan {{math|1=''K'' = −1}}, secara berurutan akan menghasilkan aturan sinus pada permukaan Euklides, bola, dan hiperbolik, yang dijelaskan pada bagian-bagian sebelumnya. Misalkan {{math|''p''<sub>''K''</sub>(''r'')}} menyatakan keliling lingkaran berdiameter {{math|''r''}} pada ruang dengan kurvatur konstan {{math|''K''}}. Maka {{math|1=''p''<sub>''K''</sub>(''r'') = 2''π'' sin<sub>''K''</sub> ''r''}}. Akibatnya, aturan sinus juga dapat ditulis ulang sebagai:<math display="block">\frac{\sin A}{p_K(a)} = \frac{\sin B}{p_K(b)} = \frac{\sin C}{p_K(c)} \,.</math>Rumus ini ditemukan oleh [[János Bolyai]].<ref>{{cite book|last=Katok|first=Svetlana|year=1992|url=https://archive.org/details/fuchsiangroups00kato|title=Fuchsian groups|location=Chicago|publisher=University of Chicago Press|isbn=0-226-42583-5|page=[https://archive.org/details/fuchsiangroups00kato/page/n31 22]|author-link=Svetlana Katok|url-access=limited}}</ref>
▲2R &= \frac{abc} {2\sqrt{p(p-a)(p-b)(p-c)}} \\
▲&= \frac {2abc} {\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4) }}
== Lihat pula ==
* [[Triangulasi]]
|