Irisan kerucut: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Akuindo (bicara | kontrib)
Tag: Pengembalian manual
Akuindo (bicara | kontrib)
Baris 44:
 
== Sekilas irisan kerucut ==
; Garis lurus
{{utama|Persamaan linear}}
: Titik pusat (0,0): <math>y = mx</math>
: Titik pusat (h,k): <math>y - k = m (x - h)</math>
: Bergradien <math>m = \frac{y}{x}</math> (satu titik) dan <math>m = \frac{y-y_1}{x-x_1}</math> (dua titik)
: Dua titik: <math>\frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}</math>
: Sejajar: <math>m_1 = m_2</math>
: Tegak lurus: <math>m_1 = \frac{1}{m_2}</math>
 
; Lingkaran
: Titik pusat (0,0): <math>x^2 + y^2 = r^2 </math>
: Titik pusat (h,k): <math>(x - h)^2 + (y - k)^2 = r^2 </math>\text { atau <math>} x^2 + 2hx + h^2 + y^2 + 2ky + k^2 - r^2 = 0 </math>
 
dengan <math>x^2 + y^2 + Ax + By + C = 0 </math> maka <math>A = 2h, B = 2k \text { serta } C = h^2 + k^2 - r^2 </math>
 
; Parabola
{{utama|Persamaan kuadrat}}
{| class="wikitable sortable"
|-
Baris 57 ⟶ 67:
! !! colspan=2 align="center"| Titik pusat (0,0)
|-
| Persamaan || <math>x^2 = 4py </math> || <math>y^2 = 4px </math>
|-
| Sumbu simetri || sumbu y || sumbu x
|-
| Fokus || <math>F (0, p) </math> || <math>F (p, 0) </math>
|-
| Direktris || <math>y = - p </math> || <math>x = - p </math>
|-
! !! colspan=2 align="center"| Titik pusat (h,k)
|-
| Persamaan || <math>(x - h)^2 = 4p(y - k) </math> || <math>(y - k)^2 = 4p(x - h) </math>
|-
| Sumbu simetri || <math>x = h </math> || <math>y = k </math>
|-
| Fokus || <math>F (h, k + p) </math> || <math>F (h + p, k) </math>
|-
| Direktris || <math>y = k - p </math> || <math>x = h - p </math>
|}
 
Baris 83 ⟶ 93:
! !! colspan=2 align="center"| Titik pusat (0,0)
|-
| Persamaan || <math>\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 </math> || <math>\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 </math>
|-
| Panjang sumbu mayor || <math>2a </math> || <math>2a </math>
|-
| Panjang sumbu minor || <math>2b </math> || <math>2b </math>
|-
| Panjang Latus Rectum || <math>L = \frac{2b^2}{a} </math> || <math>L = \frac{2b^2}{a} </math>
|-
| Fokus || <math>F (0, \pm c) </math> || <math>F (\pm c, 0) </math>
|-
| Puncak || <math>P (0, \pm a) </math> || <math> P (\pm a,0) </math>
|-
| Direktris || <math>y = \pm \frac{a^2}{c} </math> || <math>x = \pm \frac{a^2}{c} </math>
|-
| Eksentrisitas || <math>e = \frac{c}{a} </math> || <math>e = \frac{c}{a} </math>
|-
! !! colspan=2 align="center"| Titik pusat (h,k)
|-
| Persamaan || <math>\frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1 </math> || <math>\frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 </math>
|-
| Panjang sumbu mayor || <math>2a </math> || <math>2a </math>
|-
| Panjang sumbu minor || <math>2b </math> || <math>2b </math>
|-
| Panjang Latus Rectum || <math>L = \frac{2b^2}{a} </math> || <math>L = \frac{2b^2}{a} </math>
|-
| Fokus || <math>F (h, k \pm c) </math> || <math>F (h \pm c, k) </math>
|-
| Puncak || <math>P (h, k \pm a) </math> || <math>P (h \pm a, k) </math>
|-
| Direktris || <math>y = \pm \frac{a^2}{c} </math> || <math>x = \pm \frac{a^2}{c} </math>
|-
| Eksentrisitas || <math>e = \frac{c}{a} </math> || <math>e = \frac{c}{a} </math>
|}
 
dimana <math> c = \sqrt{a^2 - b^2} </math>
 
; Hiperbola
Baris 127 ⟶ 137:
! !! colspan=2 align="center"| Titik pusat (0,0)
|-
| Persamaan || <math>\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1 </math> || <math>\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 </math>
|-
| Panjang sumbu mayor || <math>2a </math> || <math>2a </math>
|-
| Panjang sumbu minor || <math>2b </math> || <math>2b </math>
|-
| Panjang Latus Rectum || <math>L = \frac{2b^2}{a} </math> || <math>L = \frac{2b^2}{a} </math>
|-
| Fokus || <math>F (0, \pm c) </math> || <math>F (\pm c, 0) </math>
|-
| Puncak || <math>P (0, \pm a) </math> || <math>P (\pm a,0) </math>
|-
| Asimtot || <math>y = \pm \frac{a}{b} x </math> || <math>y = \pm \frac{b}{a} x </math>
|-
| Eksentrisitas || <math>e = \frac{c}{a} </math> || <math>e = \frac{c}{a} </math>
|-
! !! colspan=2 align="center"| Titik pusat (h,k)
|-
| Persamaan || <math>\frac{(x - h)^2}{b^2} - \frac{(y - k)^2}{a^2} = 1 </math> || <math>\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 </math>
|-
| Panjang sumbu mayor || <math>2a </math> || <math>2a </math>
|-
| Panjang sumbu minor || <math>2b </math> || <math>2b </math>
|-
| Panjang Latus Rectum || <math>L = \frac{2b^2}{a} </math> || <math>L = \frac{2b^2}{a} </math>
|-
| Fokus || <math>F (h, k \pm c) </math> || <math>F (h \pm c, k) </math>
|-
| Puncak || <math>P (h, k \pm a) </math> || <math>P (h \pm a, k) </math>
|-
| Asimtot || <math>(y - k) = \pm \frac{a}{b} (x - h) </math> || <math>(y - k) = \pm \frac{b}{a} (x - h) </math>
|-
| Eksentrisitas || <math>e = \frac{c}{a} </math> || <math>e = \frac{c}{a} </math>
|}
 
dimana <math> c = \sqrt{a^2 + b^2} </math>
 
== Persamaan garis singgung ==