Panel surya: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Mhd.salman09 (bicara | kontrib)
Mhd.salman09 (bicara | kontrib)
merapikan artikel
Baris 2:
[[Berkas:Solar_panels_on_yacht_at_sea.jpg|jmpl|300px|ka|Panel surya (fotovoltaik arrays) di atas yacht kecil di laut dapat mengisi baterai 12 V sampai 9 Amp di cahaya Matahari langsung dan penuh.]]
 
'''Panel surya''' adalah sebuah [[alat]] yang terdiri dari [[sel surya]] yang terbuat dari bahan [[semikonduktor]] untuk mengubah [[cahayaenergi surya]] menjadi [[energi listrik]]. MerekaPrinsip disebutkerjanya suryadidasari atasoleh Mataharipertemuan atausemikonduktor "sol"jenis karenaP Mataharidan merupakansemikonduktor sumberjenis cahayaN.{{Sfn|Hidayanti|2020|p=104}} terkuatPanel yangsurya dapattersusun dimanfaatkan.dari Panelmodul surya seringyang kalidirangkai disebutsecara [[selseri fotovoltaik]],maupun fotovoltaikparalel dapatsesuai diartikandengan sebagaikebutuhan daya "cahaya-listrik" tertentu.{{Sfn|Hidayanti|2020|p=12}} SelPemasangan panel surya ataupada selsuatu fotovoltaikbangunan bergantungkomersial atau pada efekbangunan fotovoltaikperusahaan untukditentukan oleh kebijakan mengenai penggunaan instalasi listrik yang menyerapmemanfaatkan energi Mataharisurya.{{Sfn|Hidayanti|2020|p=23}} dan menyebabkanPenyediaan arusruang mengalirbagi antarapanel duasurya lapisanmerupakan bermuatansalah yangsatu berlawananpertimbangan penting bagi optimalisasi sistem listrik tenaga surya.{{Sfn|Hidayanti|2020|p=46}}
 
Jumlah penggunaan panel surya di porsi pemroduksian listrik dunia sangat kecil, tertahan oleh biaya tinggi per wattnya dibandingkan dengan [[bahan bakar fosil]] - dapat lebih tinggi sepuluh kali lipat, tergantung keadaan. Mereka telah menjadi rutin dalam beberapa aplikasi yang terbatas seperti, menjalankan "boya" atau alat di gurun dan area terpencil lainnya, dan dalam eksperimen lainnya mereka telah digunakan untuk memberikan tenaga untuk mobil balap dalam kontes seperti [[Tantangan surya dunia|Tantangan Surya Dunia]] di [[Australia]].
 
Sekarang ini biaya panel listrik surya membuatnya tidak praktis untuk penggunaan sehari-hari di mana tenaga listrik "kabel" telah tersedia. Bila biaya energi naik dalam jangka tertentu, atau bila penerobosan produksi terjadi yang mengurangi ongkos produksi panel surya, ini sepertinya tidak akan terjadi dalam waktu dekat.
 
Pada 2001 [[Jepang]] telah memasang kapasitas 0,6 MWp tenaga surya puncak, sementara itu [[Jerman]] memilik 0,26 MWp dan [[Amerika Serikat]] 0,16 MWp. Pada saat ini tenaga listrik surya seluruh dunia kira-kira sama dengan yang diproduksi oleh satu [[kincir angin]] bear. Di AS biaya pemasangan panel surya ini telah jatuh dari $55 per watt puncak pada [[1976]] menjadi $4 per watt peak di [[2001]].
 
Panel surya memiliki beberapa jenis yaitu panel surya monokristalin, panel surya polikristalin, dan sel surya . Tapi secara umum yang paling banyak dipergunakan adalah jenis monocrystalline dan poliycrystalline.
 
Pemanfaatan panel surya saat ini mulai diperhitungkan, karena sumber energi dari sinar cahaya matahari adalah tidak terbatas dan terbarukan.
 
== Bahan modul ==
Modul panel surya umumnya tersusun dari bahan [[silikon]]. Kandungan sel silikon mempunyai struktur atom yang tunggal, ganda atau tidak berbentuk. Struktur atom yang tunggal disebut monokristalin, sedangkan yang ganda disebut polikristalin. Sementara itu, silikon yang tidak berbentuk disebut amarfous dan hanya ada pada silikon dengan lapisan yang tipis. Selain silikon, beberapa jenis modul panel surya terbuat dari bahan berupa kadmium telurida atau tembaga indium galium selenida. Sementara itu, beberapa jenis modul panel surya menggabungkan ketiga jenis bahan tersebut.<ref>{{Cite book|last=Iskandar, C. S., dan Latief, N.|date=2018|url=https://www.google.co.id/books/edition/Sistem_Listrik_Tenaga_Surya_disain_dan_O/h86XDwAAQBAJ?hl=id&gbpv=1&dq=deepublish+Surya&printsec=frontcover|title=Sistem Listrik Tenaga Surya Disain, dan Operasi Instalasi: Ikhtisar untuk Membangun Makassar, Sulawesi Selatan, Indonesia|location=Sleman|publisher=Deepublish|isbn=978-602-475-497-6|pages=7|url-status=live}}</ref> Pembuatan panel surya menggunakan laser diode yang dipompa untuk penulisan interkoneksi rangkaian listrik dan pola isolasi. [[Panjang gelombang]] yang diperlukan untuk penulisan yaitu 1.064 [[nanometer]].{{Sfn|Hidayanti|2020|p=58}}
 
== Cara kerja ==
Baris 21 ⟶ 11:
 
== Kinerja ==
Salah satu faktor yang menentukan kinerja dari panel surya ialah kondisi iradiasi dari sinar matahari. Kinerja panel surya ini diamati secara kelistrikan melalui dua jenis besaran listrik, yaitu arus listrik dan tegangan listrik. Modul surya akan menghasilkan arus listrik dengan jumlah yang cenderung menurun secara proporsional ketika iradiasi mengalami penurunan. Kondisi ini menghasilkan tegangan listrik dengan variasi yang sangat kecil. Modul surya tidak mengalami pengaruh yang berarti dari iradiasi selama nilai iradiasi masih dalam batasan yang normal. Tingkat [[transformasi energi]] dari modul surya akan mempunyai nilai yang sama pada kondisi tersebut.{{Sfn|Rahmawati dan Sujito|2019|p=47}} Faktor lain yang mempengaruhi kinerja dari panel surya ialah suhu modul surya. Nilai suhu modul surya berbanding terbalik dengan nilai tegangan listrik yang dihasilkan oleh modul surya. Sementara itu, nilai arus listrik yang dihasilkan tetap sama. Pada kondisi ini, penurunan nilai tegangan listrik pada modul surya berarti penurunan nilai daya listrik yang dihasilkan oleh panel surya.{{Sfn|Rahmawati dan Sujito|2019|p=48}}
 
=== PengendalianIradiasi ===
Salah satu faktor yang menentukan kinerja dari panel surya ialah kondisi iradiasi dari sinar matahari. Kinerja panel surya ini diamati secara kelistrikan melalui dua jenis besaran listrik, yaitu arus listrik dan tegangan listrik. Modul surya akan menghasilkan arus listrik dengan jumlah yang cenderung menurun secara proporsional ketika iradiasi mengalami penurunan. Kondisi ini menghasilkan tegangan listrik dengan variasi yang sangat kecil. Modul surya tidak mengalami pengaruh yang berarti dari iradiasi selama nilai iradiasi masih dalam batasan yang normal. Tingkat [[transformasi energi]] dari modul surya akan mempunyai nilai yang sama pada kondisi tersebut.{{Sfn|Rahmawati dan Sujito|2019|p=47}} Faktor lain yang mempengaruhi kinerja dari panel surya ialah suhu modul surya. Nilai suhu modul surya berbanding terbalik dengan nilai tegangan listrik yang dihasilkan oleh modul surya. Sementara itu, nilai arus listrik yang dihasilkan tetap sama. Pada kondisi ini, penurunan nilai tegangan listrik pada modul surya berarti penurunan nilai daya listrik yang dihasilkan oleh panel surya.{{Sfn|Rahmawati dan Sujito|2019|p=48}}
 
=== Disain ===
Kinerja dari panel surya juga dapat ditinjau dari desainnya. Lapisan permukaan panel surya harus dibuat lebih tebal dibandingkan dengan nilai optimumnya. Tujuannnya untuk mengurangi resistensi yang melintang. Keberadaan resistensi melintang ini dapat mengurangi nilai efisiensi energi pada kumpulan sel surya.{{Sfn|Hidayanti|2020|p=126}}
 
=== Suhu radiasi ===
Panel surya memerlukan kondisi dan persyaratan suhu radiasi tertentu agar dapat mempertahankan kegiatan produksinya. Kisaran suhu yang memungkinkan adalah antara 32–68<sup>o</sup> [[Fahrenheit]]. Nilai ini tidak tercapai pada kondisi Matahari dalam keadaan sejajar dengan vektornya pada sumbu rotasi. Pada kondisi ini, suhu radiasi sangat panas dan dapat mencapai nilai 176<sup>o</sup> Fahrenheit. Pada permukaan Bumi yang memiliki ketinggian yang lebih rendah, suhunya akan lebih meningkat akibat [[radiasi elektromagnetik]] dari [[Bumi]].{{Sfn|Hidayanti|2020|p=36}}
 
== Pengendalian{{Sfn|Hidayanti|2020|p=29-30}} ==
 
=== Pengendalian arus searah ===
Baris 29 ⟶ 27:
 
=== Pengendalian posisi ===
Pengendalian posisi panel surya dapat menggunakan dua jenis sistem, yaitu sistem pelacakan poros tunggal dan sistem pelacakan poros ganda. Sistem pelacakan poros tunggal menghasilkan posisi panel surya yang hanya mengarah kepada satu sudut kemiringan saja. Sedangkan sistem pelacakan poros ganda mampu mengubah posisi panel surya pada dua jenis sudut kemiringan. Pelacakan sinar matahari bagi panel surya menjadi lebih akurat pada sistem pelacakan poros ganda. Kedua jenis sistem ini dapat menghasilkan peningkatan produksi daya listrik dengan nilai maksimal tertentu sesuai dengan kondisi [[iradiasi]] dari sinar matahari. Sistem pelacakan poros tunggal menghasilkan peningkatan produksi daya listrik dengan nilai maksimal sebesar 27%, sedangkan sistem pelacakan poros ganda dapat menghasilkan peningkatan produksi daya listrik dengan nilai maksimal sebesar 37% tiap tahunnya.{{Sfn|Rahmawati dan Sujito|2019|p=46-47}}
 
== Pengembangan ==
Pengembangan penggunaan panel surya tidak hanya pada negara-negara yang selalu disinari oleh sinar matahari. Tiga negara telah memulai penggunaan energi surya telah memulai penggunaan energi surya sejak tahun 2005. Masing-masing ialah [[Jerman]], [[Jepang]] dan [[Amerika Serikat]]. Ketiga negara ini menyumbang sebanyak 90% dari 3.075 MegaWatt hasil produksi menggunakan teknologi fotovoltaik. Pada Desember 2007, jumlahnya meningkat menjadi 4.500 MegaWatt. Negara-negara lain di Eropa dan Asia mulai mempertimbangkan penggunaan energi surya seiring peningkatan harga minyak dunia dan harga beli energi listrik dengan nilai yang dua kali lipat lebih mahal dibandingkan yang dijual oleh Amerika Serikat. Agen Energi Internasional mencatat bahwa Amerika Serikat telah memanfaatkan energi surya untuk diubah menjadi energi listrik secara mantap sejak tahun 2006. Sementara itu, Jepang dan Jerman memulai investasi atas energi terbarukan sejak tahun 1990-an.
 
== Lihat pula ==
Baris 42 ⟶ 43:
=== Daftar pustaka ===
 
* {{Cite book|last=Rahmawati, Y., dan SujitoHidayanti|first=Fitri|date=20192020|url=httpshttp://issuurepository.comunas.ac.id/ahmadrizalkaruniawan26572022/docs1/buku_ajar_pltsBuku%20Ajar_Aplikasi%20Sel%20Surya_Fitria%20Hidayanti.pdf|title=PembangkitAplikasi Listrik TenagaSel Surya|location=MalangJakarta Selatan|publisher=UniversitasLP Negeri MalangUNAS|isbn=978-623-7376-53-8|ref={{sfnref|Rahmawati dan SujitoHidayanti|20192020}}|url-status=live}}
*{{Cite book|last=Rahmawati, Y., dan Sujito|date=2019|url=https://issuu.com/ahmadrizalkaruniawan2657/docs/buku_ajar_plts|title=Pembangkit Listrik Tenaga Surya|location=Malang|publisher=Universitas Negeri Malang|ref={{sfnref|Rahmawati dan Sujito|2019}}|url-status=live}}
 
== Pranala luar ==