Pengguna:Dedhert.Jr/Uji halaman 01/13: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) ←Membuat halaman berisi '{{Short description|Product of numbers from 1 to n}} {{Use mdy dates|cs1-dates=ly|date=December 2021}} {{about|hasil kali bilangan bulat berurutan|statistical experiments over all combinations of values|factorial experiment|data representation by independent components|factorial code}} {| class="wikitable" style="margin:0 0 0 1em; text-align:right; float:right;" |+Selected factorials; nilai dalam notasi ilmiah dibulatkan !<math>n</math> !<math>n!</math> |- |0...' |
Dedhert.Jr (bicara | kontrib) Tidak ada ringkasan suntingan |
||
Baris 118:
\end{align}</math>Contohnya,<math display="block">5! = 5 \times 4 \times 3 \times 2 \times 1 = 5\times 24 = 120. </math>Nilai <math>0!</math> adalah 1, menurut konvensi [[darab kosong]].<ref name="gkp">{{cite book|last1=Graham|first1=Ronald L.|last2=Knuth|first2=Donald E.|last3=Patashnik|first3=Oren|date=1988|title=Concrete Mathematics|title-link=Concrete Mathematics|location=Reading, MA|publisher=Addison-Wesley|isbn=0-201-14236-8|page=111|author1-link=Ronald Graham|author2-link=Donald Knuth|author3-link=Oren Patashnik}}</ref>
Much of the mathematics of the factorial function was developed beginning in the late 18th and early 19th centuries. [[Stirling's approximation]] provides an accurate approximation to the factorial of large numbers, showing that it grows more quickly than [[exponential growth]]. [[Legendre's formula]] describes the exponents of the prime numbers in a [[prime factorization]] of the factorials, and can be used to count the trailing zeros of the factorials. [[Daniel Bernoulli]] and [[Leonhard Euler]] [[Interpolate|interpolated]] the factorial function to a continuous function of [[Complex number|complex numbers]], except at the negative integers, the (offset) [[gamma function]].
|