Teorema Cook: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.8
Rrunitis (bicara | kontrib)
Menyunting ejaan
Baris 4:
 
Teorema Cook-Levin atau dikenal juga dengan teorema Cook menyatakan bahwa:
'''''Problem satisfiabiitysatisfiability'' (SAT) adalah NP-complete'''<ref name="ww">{{Cite web |url=http://cfile7.uf.tistory.com/attach/20712D0C4B84A8003D040B |title=Salinan arsip |access-date=2012-05-20 |archive-date=2014-11-13 |archive-url=https://web.archive.org/web/20141113045148/http://cfile7.uf.tistory.com/attach/20712D0C4B84A8003D040B |dead-url=yes }}</ref>
 
Terdapat 2 cara dalam pembuktian untuk teorema ini yaitu:
Baris 12:
Langkah - langkah pembuktian:
'''SAT adalah NP'''
SAT adalah NP karena masukan dari nilai Boolean ke variabel boolean memenuhi satisfiabliity''satisfiablility'' dari suatu ekspresi yang dapat diverifikasikan dalam waktu polinomial oleh sebuah mesin turing deterministik.
contoh: E = (X<sub>1</sub> V ¬X<sub>1</sub> V X<sub>2</sub>) Ʌ (X<sub>3</sub> V X<sub>2</sub> V ¬X<sub>1</sub>) Ʌ (X<sub>1</sub> V X<sub>2</sub>) Ʌ (X<sub>3</sub>)
dengan memberikan assignment pada variabel X<sub>1</sub>, X<sub>2</sub>, X<sub>3</sub>. SAT adalah suatu ekspresi dalam bentuk CNF dan satisfiable jika menghasilkan nilai True.
Baris 29:
* Lakukan pengecekan apakah formula boolean yang dihasilkan satisfiable.
 
Ide tersebut dapat dilustrasikandiilustrasikan pada gambar dibawah ini
<gallery>
Berkas:Pict3.png
Baris 43:
* X<sub>i,j,s</sub>: true jika cell [i,j] bernilai s; selain itu bernilai false
* cell[i,j]: cell dengan lokasi baris ke-i dan kolom ke -j
* Suatu Tableau tanpa aturan tertentu dapat berisi konfigurasi yang invaildinvalid, misal: cell berisi ''multiple symbols'', tidak dimulai dengan input w dan state q<sub>0</sub>, konfigurasi neighbour tidak berkorespondensi dengan aturan transisi, dan sebagainya. Sehingga harus dihasilkan formula Boolean yang memaksa tableau agar valid dan menghasilkan ''result'' pada ''accet state''.
* Sebuah cell dapat berisi tepat 1 symbol di antara sebuah state, sebuah alphabet tape, dan sebuah #. (φ <sub>cell</sub>)
* Konfigurasi pertama harus berhubungan dengan input w dan state awal q. (φ <sub>start</sub>)
Baris 64:
Berkas:Pict7.png
</gallery>
* φ<sub>move</sub> mengecek apakah seyiapsetiap window 2x3 adalah legal sesuai dengan aturan transisi dari mesin turing.
<gallery>
Berkas:Pict8.png