Waduk: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
kTidak ada ringkasan suntingan |
kTidak ada ringkasan suntingan |
||
Baris 13:
=== Waduk sisi sungai ===
Waduk sisi sungai dibangun dengan memompa air dari sungai. Waduk seperti ini biasanya dibangun melalui
=== Waduk pelayanan ===
Baris 22:
== Pembangunan waduk buatan ==
Pembangunan waduk buatan sendiri umumnya dilakukan di lahan yang bebas dari jangkauan warga ataupun jauh dari kawasan keramaian. Namun, setelah selesai, fungsi waduk ini dapat digunakan untuk menarik wisatawan ataupun menjadi objek wisata. Waduk ini biasanya dibangun
|editor-first=John
|editor-last=Rodda
Baris 40:
Banyak dari bagian sisi waduk digunakan untuk menyediakan bahan baku bagi instalasi pengolahan air yang mengirim air minum melalui pipa-pipa air. Waduk tidak hanya menahan air sampai tingkat yang dibutuhkan, namun dapat menjadi tempat utama dalam proses pengolahan air. Waktu ketika air ditahan sebelum dikeluarkan dikenal sebagai waktu retensi, merupakan salah satu fitur desain yang memudahkan partikel dan endapan lumpur untuk mengendap seperti ketika melakukan perawatan biologi alami menggunakan [[alga]], [[bakteri]], dan [[zooplankton]] yang hidup secara alami dengan air.
Namun proses alami
=== Hidroelektrisitas ===
[[Berkas:Hydroelectric dam.svg|jmpl|ka|Bendungan Hidroelektrisitas dalam bagian silang.|274x274px]]
Sebuah waduk membangkitkan [[Pembangkit listrik tenaga air|hidroelektrisitas]] termasuk [[turbin|turbin air]] yang terhubung dengan penahan badan air dengan pipa berdiameter besar. Turbin ini membangkitkan perangkat yang mungkin berada pada dasar bendungan atau lainnya yang jauh jaraknya. Beberapa waduk menghasilkan [[Pembangkit listrik tenaga air|hidroelektrisitas]] menggunakan pompa yang diisi ulang seperti waduk tingkat tinggi yang diisi dengan air menggunakan pompa elektrik berkinerja tinggi pada waktu
=== Kontrol sumber daya air ===
Baris 52:
* '''Irigasi''' - Air di waduk untuk irigasi bisa dialirkan ke jaringan sejumlah [[kanal]] untuk fungsi pertanian atau sistem pengairan sekunder. Irigasi juga bisa didukung oleh waduk yang mempertahankan aliran air yang memungkinkan air diambil untuk irigasi di bagian yang lebih rendah dari sungai.<ref>{{Cite web |url=http://www.ukia.org/eabooklets/EA%20Reservoir%20booklet_final.pdf |title=Thinking about an irrigation reservoir? |access-date=2014-01-19 |archive-date=2016-03-03 |archive-url=https://web.archive.org/web/20160303203504/http://www.ukia.org/eabooklets/EA%20Reservoir%20booklet_final.pdf |dead-url=yes }}</ref>
* '''Kontrol banjir''' - juga dikenal sebagai atenuasi atau penyeimbangan waduk, waduk sebagai pengendali banjir mengumpulkan air saat terjadi curah hujan tinggi, dan perlahan melepaskannya selama beberapa minggu atau bulan. Beberapa dari waduk seperti ini dibangun melintang tehadap aliran sungai dengan aliran air dikontrol melalui ''orrifice plate''. Saat aliran sungai melewati kapasitas ''orrific plate'' di belakang waduk, air akan berkumpul di dalam waduk. Namun saat aliran air berkurang, air di dalam waduk akan dilepaskan secara perlahan sampai waduk tersebut kembali kosong. Dalam beberapa kasus waduk hanya berfungsi beberapa kali dalam satu dekade dan lahan di dalam waduk akan difungsikan sebagai tempat rekreasi dan berkumpulnya komunitas. Generasi baru dari bendungan penyeimbang dikembangkan untuk mengatasi konsekuensi perubahan iklim, yang disebut ''Flood Detention Reservoir'' (waduk penahan banjir). Karena waduk seperti ini bisa menjadi kering dalam waktu yang sangat lama, maka bagian intinya yang terbuat dari
* '''Kanal-kanal''' - Di tempat-tempat yang tidak memungkinkan aliran air alami dialirkan ke kanal, waduk dibangun untuk menjamin ketersediaan air ke sungai. Contohnya saat kanal dibangun memanjat melintasi barisan perbukitan untuk sarana transportasi [[lock|''lock'']].<ref>{{Cite web |url=http://www.huddersfield1.co.uk/huddersfield/narrowcanal/huddscanalres.htm |title=Huddersfield narrow canal reservoirs |access-date=2014-01-19 |archive-date=2001-12-23 |archive-url=https://web.archive.org/web/20011223100940/http://huddersfield1.co.uk/huddersfield/narrowcanal/huddscanalres.htm |dead-url=yes }}</ref>
* '''Rekreasi''' - Air bisa dilepaskan dari waduk untuk menciptakan atau
=== Penyeimbang aliran ===
Baris 66:
=== Rekreasi ===
{{wide image|Waduk_Ria_Rio_Panorama_Hariadhi.jpg|600px|<center>Waduk Ria Rio sebagai salah satu waduk taman, tempat rekreasi di Jakarta</center>}}
Badan air yang tercipta karena waduk dapat dimanfaatkan sebagai area rekreasi seperti pemancingan,
== Keamanan ==
Di beberapa negara besar, konstruksi waduk diatur dalam perundang-undangan.<ref>{{Cite web |url=http://www.dlr.enr.state.nc.us/pages/damsafetylaw1967.html |title=North Carolina Dam safety law |access-date=2014-01-19 |archive-date=2010-04-16 |archive-url=https://web.archive.org/web/20100416191623/http://www.dlr.enr.state.nc.us/pages/damsafetylaw1967.html |dead-url=yes }}</ref><ref>[http://www.opsi.gov.uk/RevisedStatutes/Acts/ukpga/1975/cukpga_19750023_en_1 Reservoirs Act 1975 The Reservoirs Act 1975 (UK)]</ref> Banyak usaha yang dilakukan untuk memperbaiki titik terlemah dari suatu bendungan, namun tujuan ini hanya meminimalisasi air yang tidak terkendali. Waduk yang tidak kuat konstruksinya akan menyebabkan air membanjiri seluruh wilayah di sekitar bendungan dengan arus yang kuat dan menimbulkan korban jiwa, seperti yang terjadi di Llyn Eigiau yang menewaskan 17 orang<ref>[http://www.snowdoniaguide.com/llyn_eigiau.html Snowdonia – Llyn Eigau]</ref> atau Waduk [[Situ Gintung]] yang menewaskan 100 orang sementara 902 orang harus mengungsi<ref>[http://metro.news.viva.co.id/news/read/45765-jumlah_korban_meninggal_100_jiwa ''Jumlah Korban Meninggal 100 jiwa''.] diakses dari situs berita VivaNews pada 20 Januari 2014</ref> dan 100 orang hilang.<ref>[http://www.tempo.co/read/news/2009/03/29/057167104/Sekitar-100-Korban-Situ-Gintung-Dinyatakan-Hilang ''Sekitar 100 Korban Situ Gintung Dinyatakan Hilang''.] Diakses dari situs berita Tempo pada 20 Januari 2014</ref>
=== Perubahan lingkungan ===
Berdasarkan keadaan, waduk dibuat untuk generasi [[Hidroelektrik|hidro-elektrik]] juga dapat mengurangi atau menambah produksi bersih dari [[gas rumah kaca]]. '''Peningkatannya''' dapat terjadi jika terdapat pembusukan material tumbuhan di daerah banjir di anaerobik melepaskan lingkungan ([[metana]] dan [[karbon dioksida]]).<!-- Ini muncul berlawanan dengan intuisi posisi munculnya karena banyak karbon dilepas sebagai metana yang mendekati 8 kali lebiih berpotensial sebagai gas rumah kaca daripada karbon dioksida.<ref name="Houghton">{{cite journal| first=John| last=Houghton| title=Global warming| publisher=Institute of Physics| date=4 May 2005| page=1362 |url=http://stacks.iop.org/RoPP/68/1343| doi=10.1088/0034-4885/68/6/R02| journal=Reports on Progress in Physics| volume=68| issue=6}}</ref>-->
Siswa dari Institut Nasional untuk penelitian dari [[Hutan Amazon|Amazon]] menemukan bahwa waduk hidroelektrik melepas [[karbondioksida]] dalam jumlah besar akibat membusuknya pohon-pohon yang telah tumbang di waduk, khususnya selama dekade pertama setelah penutupan.<ref name="envcon">Fearnside, P.M. 1995. bendungan Hidroelektrik di Amazon Brasil sebagai sumber untuk gas 'rumah kaca'. ''Environmental Conservation'' 22(1): 7–19.</ref> Hal ini membuat dampak pemanasan global dari bendungan meningkat jauh lebih tinggi daripada pembangkit listrik yang menghasilkan kekuatan yang sama dari bahan bakar fosil.<ref name="envcon" /> Menurut laporan World Commission on Dams, ketika bendungan relatif besar<!-- dan tidak ada pembukaan sebelum hutan di daerah banjir dilakukan-->, emisi gas rumah kaca dari reservoir bisa lebih tinggi daripada pembangkit listrik berbahan bakar minyak konvensional.<ref>{{Cite web |url=http://www.newscientist.com/article.ns?id=dn7046 |title=Hydroelectric power's dirty secret revealed – earth – 24 February 2005 – New Scientist<!-- Bot generated title --> |access-date=2014-02-09 |archive-date=2008-05-18 |archive-url=https://web.archive.org/web/20080518175352/http://www.newscientist.com/article.ns?id=dn7046 |dead-url=yes }}</ref> Sebagai contoh, pada tahun 1990, dampak ''impoundment'' di balik Balbina Dam di Brasil (diresmikan pada 1987) pada pemanasan global 20 kali lebih besar dari pembangkit listrik yang menghasilkan kekuatan yang sama dari bahan bakar fosil<!--, karena area yang luas banjir per unit listrik yang dihasilkan-->.<ref name="envcon" />
=== Limnologi ===
Sebenarnya banyak kemiripan dari sudut pandang [[limnologi]] antara waduk dengan danau untuk ukuran yang sebanding. Hanya saja tetap ada perbedaan signifikan di antara keduanya.<ref>[http://www.forestencyclopedia.net/p/p1483 Ecology of Reservoirs and Lakes]</ref> Banyak waduk memiliki perbedaan akibat variasi ketinggian air sehingga membuat beberapa daerah tidak digenangi air atau sama sekali kekeringan dalam rentang
Waduk di dataran tinggi cenderung memiliki umur residensi lebih singkat dibanding danau alami, sehingga mengalami siklus nutrisi yang lebih cepat melalui badan airnya sehingga lebih mudah lenyap dari sistem. Hal ini sering dianggap sebagai sumber selisih perhitungan antara kandungan kimiawi air dengan kandungan biologisnya, dengan kecenderungan komponen biologisnya lebih mampu bergantung kepada kondisi kandungan rendah nutrisi (oligotroph) dibanding yang seharusnya terjadi dalam perhitungan kimiawi. Sementara sebaliknya, waduk di dataran rendah mengumpulkan air dari sungai-sungai yang telah kaya dengan nutrisi yang memperlihatkan karakteristik eutrofis yang tinggi dan sistem biologisnya memiliki kesempatan yang besar untuk mmanfaatkan kekayaan nutrisi yang ada.
Waduk yang dalam dengan menara penyedot
=== [[Seismisitas]] ===
Proses pengisian (pembendungan) waduk sering dikaitkan dengan ''reservoir-triggered seismicity'' (RTS) sebagai kejadian gempa yang terjadi di sekitar dinding waduk atau di dalam waduk pada masa lalu. Kejadian ini dapat dipicu oleh pengisian atau operasi waduk tersebut dan jarang terjadi jika dibandingkan dengan jumlah waduk di seluruh dunia. Dari 100 kejadian yang tercatat, beberapa contoh yang terjadi pada masa lalu antara lain Marathon Dam di Yunani (1929) sedalam 60 m (197 kaki) dan Hoover Dam di Amerika Serikat (1935) sedalam 221 m (725 kaki).
Kebanyakan kejadian gempa ini terjadi di bendungan besar
Syarat terjadinya RTS adalah adanya struktur pemicu seismik di dekat bendungan atau waduk dan struktur tersebut yang hampir gagal. Sebagai tambahan, air harus dapat menginfiltrasi stratum dari sebuah ''deep rock'' karena
=== Iklim mikro ===
Baris 96 ⟶ 94:
== Daftar waduk ==
Berikut adalah contoh beberapa waduk yang terdapat di Indonesia:
* Waduk Pacal
Baris 116 ⟶ 110:
* [[Situ Babakan]], Jakarta
* Waduk Brigif, Jakarta
* [[Waduk Jatiluhur|Waduk Jati Luhur]], Purwakarta
* [[Waduk Gajah Mungkur]], Wonogiri
== Referensi ==
|