Turunan: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Baris 90:
Jika fungsi <math>f</math> terdiferensialkan di <math>a</math>, dengan kata lain jika nilai limit <math>L</math> ada, maka nilai limit ini disebut ''turunan'' dari <math>f</math> di <math>a</math>, dan dinyatakan dengan <math>f'(a)</math> atau <math display="inline">\frac{df}{dx}(a)</math> (dibaca "turunan dari <math>f</math> terhadap <math>x</math> di <math>a</math>" atau "{{math|''dy''}} per {{math|''dx''}} di <math>a</math>").
 
== Kekontinuan dan kediferensialanKeterdiferensialan ==
[[Berkas:Right-continuous.svg|ka|jmpl|Fungsi tangga tidak memiliki turunan pada titik berwarna merah, karena fungsi tidak kontinu di titik tersebut.]]
Jika {{math|''f''}} terdiferensialkan di {{math|''a''}}, maka {{math|''f''}} harus juga [[Fungsi kontinu|kontinu]] di {{math|''a''}}. Sebagai contoh, pilih sembarang titik {{math|''a''}} dan misalkan fungsi tidak kontinu {{math|''f''}} sebagai [[Fungsi tangga Heaviside|fungsi tangga]] yang menghasilkan nilai 1 untuk semua {{math|''x''}} kurang dari {{math|''a''}}, dan menghasilkan nilai yang berbeda, misalnya 10, untuk semua nilai {{math|''x''}} yang lebih besar atau sama dengan {{math|''a''}}. Fungsi {{math|''f''}} tidak dapat memiliki turunan di titik {{math|''a''}}. Jika nilai {{math|''h''}} negatif, maka {{math|''a'' + ''h''}} akan terletak di sisi rendah dari fungsi tangga, menjadikan garis sekan dari {{math|''a''}} ke {{math|''a'' + ''h''}} akan sangat curam; dan semakin curam saat {{math|''h''}} menuju nol. Sedangkan jika {{math|''h''}} positif, maka {{math|''a'' + ''h''}} terletak pada sisi tinggi dari fungsi tangga, sehingga garis sekan dari {{math|''a''}} ke {{math|''a'' + ''h''}} tidak memiliki kemiringan (datar). Alhasil garis-garis sekan tidak menuju suatu kemiringan tertentu, mengakibatkan limit dari persamaan beda tidak ada.
Baris 282:
 
Jika fungsi <math>f</math> terdiferensialkan di keseluruhan domain <math>U</math>, maka fungsi <math>f</math> disebut [[Fungsi holomorfik|''fungsi holomorfik'']] ''di'' <math>U</math>.<ref>Eberhard Freitag, Rolf Busam: ''Funktionentheorie 1'', 4. Auflage, Springer, S. 45.</ref> Fungsi kompleks yang terdiferensialkan di keseluruhan <math>\mathbb C</math> disebut [[fungsi entire]]. Fungsi holomorfik memiliki beberapa sifat yang unik. Sebagai contoh, [[teorema Picard]] menyimpulkan bahwa [[Citra (matematika)|citra (range)]] dari fungsi entire hanya dapat berupa: {{nowrap|<math>\mathbb{C}</math>,}} {{nowrap|<math>\mathbb{C}\setminus\{z_0\}</math>,}} atau <math>\{z_0\}</math> untuk suatu {{nowrap|<math>z_0\in\mathbb{C}</math>.}} Hasil ini dapat digunakan untuk menyimpulkan bahwa, jika fungsi kompleks <math>f</math> tidak pernah menghasilkan nilai <math>z</math> maupun nilai <math>w</math>, maka <math>f</math> adalah fungsi konstan.
 
== Turunan untuk fungsi bernilai vektor ==
[[Berkas:Vector-valued_function-2.png|jmpl|Grafik dari fungsi bernilai vektor <math>\mathbf r(z) = (2\cos z,\, 4\sin z,\, z)</math>yang berbentuk [[heliks]]. Panah menandakan vektor yang dihasilkan fungsi di <math>z=19{,}5</math>. ]]Sebuah [[fungsi bernilai vektor]] <math>\mathbf y</math> terhadap sebuahdengan variabel real, adalah fungsi yang memetakan [[bilangan real]] ke suatu vektor di suatu [[ruang vektor]] <math>\R^n</math>. Fungsi bernilai vektor dapat dibagi menjadi fungsi-fungsi koordinatnya, <math>y_1(t),\, y_2(t),\, \dots,\, y_n(t)</math>. Hal ini mengartikan fungsi <math>\mathbf y</math> dapat ditulis sebagai <math>\mathbf y(t) = (y_1(t),\,y_2(t),\,\dots,\,y_n(t))</math>. Contoh dari fungsi bernilai vektor adalah [[Persamaan parametrik|kurva parametrik]] di <math>\R^2</math> atau <math>\R^3</math>. Fungsi-fungsi koordinat adalah fungsi bernilai real, mengakibatkan definisi turunan yang umumdapat berlakuditerapkan bagi mereka semua. ''Turunan dari fungsi'' <math>\mathbf y(t)</math> didefinisikan sebagai sebuah [[Vektor (matematika)|vektor]], disebut vektor singgung, yang koordinatnya adalah nilai turunan dari semua fungsi koordinatnya. Dengan kata lain,<math display="block">\mathbf{y}'(t) = (y'_1(t), \ldots, y'_n(t)).</math>Secara ekuivalen, bentukBentuk tersebut dapat ditulisdihasilkan sebagaidari menghitung<math display="block">\mathbf{y}'(t)=\lim_{h\to 0}\frac{\mathbf{y}(t+h) - \mathbf{y}(t)}{h},</math>jikadengan mengasumsikan limit dari fungsi tersebut ada. OperasiSebagai pengurangan di pembilang terjadi pada vektorcontoh, bukan skalar (bilangan real). Jika turunanbila <math>\mathbf y(t)</math> adaadalah untukvektor semuayang nilaimenandakan posisi suatu partikel pada waktu <math>t</math>, makaturunan <math>\mathbf y'(t)</math> akandapat berupadipandang fungsi bernilaisebagai vektor [[kecepatan]] dari partikel pada waktu <math>t</math>.
 
== Turunan untuk fungsi multivariabel ==
{{See also|Kalkulus multivariabel}}
{{See also|Kalkulus vektor|Kalkulus multivariabel}}[[Berkas:Vector-valued_function-2.png|jmpl|Grafik dari fungsi bernilai vektor <math>\mathbf r(z) = (2\cos z,\, 4\sin z,\, z)</math>yang berbentuk [[heliks]]. Panah menandakan vektor yang dihasilkan fungsi di <math>z=19{,}5</math>. ]]
Sebuah [[fungsi bernilai vektor]] <math>\mathbf y</math> terhadap sebuah variabel real, adalah fungsi yang memetakan [[bilangan real]] ke suatu vektor di suatu [[ruang vektor]] <math>\R^n</math>. Fungsi bernilai vektor dapat dibagi menjadi fungsi-fungsi koordinatnya, <math>y_1(t),\, y_2(t),\, \dots,\, y_n(t)</math>. Hal ini mengartikan fungsi <math>\mathbf y</math> dapat ditulis sebagai <math>\mathbf y(t) = (y_1(t),\,y_2(t),\,\dots,\,y_n(t))</math>. Contoh dari fungsi bernilai vektor adalah [[Persamaan parametrik|kurva parametrik]] di <math>\R^2</math> atau <math>\R^3</math>. Fungsi-fungsi koordinat adalah fungsi bernilai real, mengakibatkan definisi turunan yang umum berlaku bagi mereka semua. ''Turunan dari fungsi'' <math>\mathbf y(t)</math> didefinisikan sebagai sebuah [[Vektor (matematika)|vektor]], disebut vektor singgung, yang koordinatnya adalah nilai turunan dari semua fungsi koordinatnya. Dengan kata lain,<math display="block">\mathbf{y}'(t) = (y'_1(t), \ldots, y'_n(t)).</math>Secara ekuivalen, bentuk tersebut dapat ditulis sebagai<math display="block">\mathbf{y}'(t)=\lim_{h\to 0}\frac{\mathbf{y}(t+h) - \mathbf{y}(t)}{h},</math>jika limit dari fungsi tersebut ada. Operasi pengurangan di pembilang terjadi pada vektor, bukan skalar (bilangan real). Jika turunan <math>\mathbf y</math> ada untuk semua nilai <math>t</math>, maka <math>\mathbf y'</math> akan berupa fungsi bernilai vektor.
 
 
Jika vektor-vektor <math>\mathbf e_1,\, \dots,\, \mathbf e_n</math> adalah basis standar untuk <math>\R^n</math>, maka <math>\mathbf y(t)</math> juga dapat ditulis sebagai <math>y_1(t) \mathbf e_1 + \dots + y_n(t) \mathbf e_n </math>. Dengan mengasumsikan turunan fungsi bernilai vektor mempertahankan sifat kelinearan, maka turunan dari <math>\mathbf y(t)</math> dapat ditulis sebagai
 
<math display="block">y'_1(t)\mathbf{e}_1 + \cdots + y'_n(t)\mathbf{e}_n</math>
 
Pembahasan pada bagian-bagian sebelumnya hanya memperhatikan fungsi dengan ''satu'' variabel. Fungsi yang memetakan vektor ke vektor maupun vektor ke bilangan juga dapat memiliki turunan. Tetapi, garis singgung pada grafik fungsi tersebut belum tentu unik, karena ada banyak arah yang mungkin untuk membuat garis tersebut. Oleh karena itu, perumuman turunan diperlukan untuk jenis fungsi ini.
dengan menggunakan fakta setiap vektor basis bernilai konstan. Perumuman ini berguna, sebagai contoh ketika <math>\mathbf y(t)</math> adalah vektor posisi suatu partikel pada waktu <math>t</math>, turunan <math>\mathbf y'(t)</math> dapat dipandang sebagai vektor [[kecepatan]] dari partikel pada waktu <math>t</math>.
 
=== KediferensialanKeterdiferensialan dan matriks Jacobi ===
 
==== Turunan parsial ====
Baris 347 ⟶ 344:
==== Turunan berarah ====
{{Main|Turunan berarah}}
[[Berkas:Directional_derivative_contour_plot.svg|jmpl|[[Garis kontur|Plot kontur]] dari fungsi <math>f(x, y)=x^2 + y^2</math>. Vektor gradien ditandai oleh warna hitam, dan vektor unit <math>\mathbf{u}</math> yang dikali dengan turunan berarah <math>f</math>dalam arah <math>\mathbf{u}</math> ditandai wana jingga. Vektor gradien lebih panjang daripada vektor turunan berarah, karena vektor gradien menunjuk pada arah dengan perubahan nilai fungsi paling besar.]]
Jika <math>f</math> adalah fungsi bernilai real di <math>\R^n</math>, maka turunan parsial <math>f</math> mengukur variasi turunan dalam arah sumbu koordinat. Sebagai contoh, jika <math>f</math> adalah fungsi dari <math>x</math> dan <math>y</math>'','' maka turunan parsial <math>f</math> mengukur variasi di <math>f</math> dalam arah <math>x</math> dan <math>y</math>. Tapi, turunan <math>f</math> tidak mengukur secara langsung variasi <math>f</math> pada setiap arah lainnya, contohnya di sepanjang garis diagonal <math>y = x</math>. Ini diukur menggunakan turunan berarah. Misalkan vektor
 
Baris 356 ⟶ 353:
: <math>D_{\mathbf{v}}{f}(\mathbf{x}) = \lim_{h \rightarrow 0}{\frac{f(\mathbf{x} + h\mathbf{v}) - f(\mathbf{x})}{h}}.</math>
 
Dalam beberapa kasus, menghitung atau menaksir turunan berarah akan lebih mudah setelah panjang vektor diubah. Proses ini seringkali dilakukan dengan mengubah suatu masalah menjadi perhitungan berupa turunan berarah dalam arah satuan vektor. Sebagai contoh, misalkan <math>\mathbf{v} = \lambda \mathbf{u}</math> dan <math>\mathbf{u}</math> adalah satuan vektor pada arah <math>\mathbf{v}</math>. Mensubstitusi <math>h = \tfrac{k}{\lambda}</math> ke perbandingan beda di ruas kanan persamaan, akan menghasilkan bentuk
 
: <math>\frac{f(\mathbf{x} + (k/\lambda)(\lambda\mathbf{u})) - f(\mathbf{x})}{k/\lambda}
Baris 407 ⟶ 404:
 
== Turunan pada sistem bilangan hiperreal ==
Dalam matematika, bilangan hiperreal adalah sebuah cara memaknai besaran [[tak hingga]] dan [[infinitesimal]] (tak hingga kecilnya tapi tidak nol). Hiperreal adalah perumuman dari himpunan bilangan real <math>\mathbb R</math>, dan mencakup bilangan-bilangan yang lebih besar daripada <math>1+1+\dots+1</math> (untuk sembarang terhingga banyaknya suku). Pada sistem bilangan ini, turunan fungsi real <math>y = f(x)</math> di titik real <math>x</math> dapat didefinisikan sebagai [[Bayangan (matematika)|bayangan]] perbandingan {{math|{{sfrac|∆''y''|∆''x''}}}} untuk [[infinitesimal]] {{math|∆''x''}}, dimana {{math|∆''y'' {{=}} ''f''(''x'' + ∆''x'') − ''f''(''x'')}}. Perluasan (perumuman, ekstensi) alami fungsi <math>f</math> untuk hiperreal masih dilambangkan sebagai <math>f</math>, dan turunannya dikatakan ada jika besar bayangan tidak bergantung pada pemilihan infinitesimal.
 
== Perumuman ==
Baris 415 ⟶ 412:
* Perumuman penting mengenai turunan melibatkan [[fungsi kompleks]] dari [[Bilangan kompleks|variabel kompleks]], seperti fungsi (dengan domain) bilangan kompleks <math> \C </math> ke <math> \C </math>. Gagasan turunan fungsi kompleks diperoleh dengan menggantikan variabel real dengan variabel kompleks melalui definisi berikut: Jika '''<math> \C </math>''' diidentifikasi sebagai <math>\R^2</math> dengan menulis bilangan kompleks <math>z</math> sebagai <math>x + iy</math>, maka sebuah fungsi terdiferensialkan dari <math> \C </math> ke <math> \C </math> pasti terdiferensialkan sebagai sebuah fungsi dari <math>\R^2</math> ke <math>\R^2</math> (dalam artian bahwa semua turunan parsial juga ada), tetapi kebalikannya tidak benar pada umumnya: turunan kompleks hanya ada jika turunan real merupakan ''linear kompleks'' dan turunan kompleks memaksakan kaitannya antara turunan parsial yang disebut sebagai [[persamaan Cauchy–Riemann]] – lihat [[fungsi holomorfik]].
* Perumuman lainnya melibatkan fungsi antara [[Manifold mulus|manifold terdiferensialkan atau manifold mulus]]. Secara intuitif, manifold <math>M</math> dikatakan sebagai ruang yang dapat dihampiri mendekati setiap titik <math>x</math> melalui sebuah ruang vektor yang disebut sebagai [[ruang garis singgung]]: contoh prototipikalnya adalah [[permukaan mulus]] di <math>\R^3</math>. Turunan (atau diferensial) dari peta (terdiferensialkan) <math>f\colon M \to N</math> di antara manifold, di sebuah titik <math>x</math> di ''<math>M</math>'', merupakan [[peta linear]] dari ruang singgung ''<math>M</math>'' di <math>x</math> ke ruang singgung <math>N</math> di <math>f(x)</math>, sehingga turunan fungsi menjadi sebuah peta antara [[berkas garis singgung]] ''<math>M</math>'' dan <math>N</math>. Definisi tersebut merupakan bentuk dasar dalam [[geometri diferensial]], dan definisi tersebut mempunyai banyak kegunaan – lihat [[Pushforward (diferensial)|''pushforward'']] dan [[Pullback (geometri diferensial)|''pullback'']].
* Diferensiasi juga dapat didefinisikan sebagai pemetaan antara [[ruang vektor]] [[Dimensi (ruang vektor)|dimensi takhingga]], seperti [[ruang Banach]] dan [[ruang Fréchet]]. Perumuman dari turunan berarah disebut [[turunan Gateaux]], dan perumuman dari diferensial disebut [[turunan Fréchet]].
* Salah satu kekurangan turunan biasa adalah bahwa ada sangat banyak sekali fungsi yang tidak terdiferensialkan. Namun ada cara memperluas gagasan turunan sehingga semua [[fungsi kontinu]] dan fungsi lainnya dapat diturunkan melalui konsep yang dikenal sebagai [[turunan lemah]]. Tujuannya adalah agar memasukkan fungsi kontinu dalam sebuah ruang yang lebih besar yang disebut ruang [[Distribusi (matematika)|distribusi]], dan tujuan ini hanya mengharuskan bahwa fungsi "rata-rata" terdiferensialkan.
* Pengenalan dan studi mengenai banyak topik yang serupa dalam aljabar dan topologi diilhami melalui sifat-sifat turunan — sebagai contoh, lihat [[aljabar diferensial]].