Isometri: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Hadithfajri (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan visualeditor-wikitext
Rrunitis (bicara | kontrib)
Menyunting artikel
Baris 11:
'''3.11''' Setiap dua segitiga yang kongruen memiliki sebuah isometri yang unik.</ref> isometri tersebut dapat berupa translasi, rotasi, refleksi, atau komposisi dari ketiganya.
 
Isometri umum digunakan untuk mengonstruksi sebuah ruang yang terletak di dalam ruang lainnya. Sebagai contoh, [[Ruang metrik lengkap#Pelengkap|pelengkap]] dari ruang metrik <math>M</math> membutuhkan isometri dari <math>M</math> ke <math>M'</math>, sebuah [[himpunan hasil bagi]] dari ruang [[barisan Cauchy]] pada <math>M</math>. Ruang metrik asal <math>M</math> tersebut secara isometris [[Isomorfisme|isomorfik]] terhadap sebuah subruangsub ruang dari [[ruang metrik lengkap]], dan umumnya dapat dikenali lewat subruangsub ruang ini. Konstruksi-konstruksi lainnya menunjukkan bahwa setiap ruang metrik secara isometris isomorfik terhadap subset tertutup dari suatu [[ruang vektor bernorma]]; dan setiap ruang metrik lengkap secara isometris isomorfik terhadap subset tertutup dari suatu [[ruang Banach]].
 
Operator linear surjektif yang isometrik pada [[ruang Hilbert]] disebut dengan [[operator uniter]].
Baris 27:
Dua ruang metrik <math>X</math> dan <math>Y</math> dikatakan isometrik jika terdapat isometri yang bijektif dari <math>X</math> ke <math>Y</math>. Himpunan isometri bijektif (dan komposisinya) dari ruang metrik ke dirinya sendiri membentuk sebuah [[Grup (matematika)|grup]], yang disebut [[grup isometri]].
 
Terdapat istilah ''isometri lintasan'' yang lebih lemah daripada isometri. '''Isometri lintasan''' adalah pemetaan yang mempertahankan panjang kurva; pemetaan tersebut belum tentu mempertahankan jarak seperti isometri, dan tidak perlu bersifat bijektif (atau bahkan injektif). Istilah ini terkadang disebut juga dengan ''isometri'', sehingga diperlukan konteks tipe isometri yang sedaksedang dirujuk. Sebagai contoh:
 
* Setiap refleksi, translasi, dan rotasi adalah isometri global pada [[ruang Euklides]].