Kaidah darab: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
InternetArchiveBot (bicara | kontrib)
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.8.5
Dedhert.Jr (bicara | kontrib)
Tidak ada ringkasan suntingan
Baris 2:
[[Berkas:Produktregel.PNG|thumb|right|Ilustrasi geometri bukti aturan perkalian]]
{{about||Aturan rantai Euler terkait turunan parsial dari tiga variabel independen|Aturan perkalian tiga|prinsip penghitungan dalam kombinatorika|Kaidah perkalian|aturan hasil kali umum dalam probabilitas|Kaidah rantai (probabilitas)}}
Dalam [[kalkulus]], '''kaidah darab''' (Bahasa Inggris: '''{{Lang-en|product rule'''}}), atau sering disebut '''hukum Leibniz''' (lihat [[turunan]]), adalah kaidah yang menentukan turunan dari hasil kali (darab) [[fungsi]] yang terdiferensialkan.
 
Kaidah ini dapat dituliskan sebagai:
Baris 13:
 
== Penemuan oleh Leibniz ==
Kaidah ini ditemukan oleh [[Gottfried Leibniz]] yang mendemonstrasikannya dengan menggunakan [[diferensial]].<ref>{{cite Argumenjournal|author=Michelle LeibnizCirillo|date=August adalah2007|title=Humanizing sebagaiCalculus|url=http://www.nctm.org/publications/article.aspx?id=19302|journal=The berikutMathematics Teacher|volume=101|issue=1|pages=23–27|doi=10.5951/MT.101.1.0023|url-access=subscription}}</ref> Argumen Leibniz mengatakan: Jikajika ''u''(''x'') dan ''v''(''x'') adalah dua fungsi ''x'' yang terdiferensialkan., Makamaka diferensial dari ''uv'' adalah
 
: <math>
Baris 113:
: <math> {d (ab) \over dx} = \frac{\partial(ab)}{\partial a}\frac{da}{dx}+\frac{\partial (ab)}{\partial b}\frac{db}{dx} = b \frac{da}{dx} + a \frac{db}{dx}.</math>
 
== Perumuman ==
== Perampatan (''Generalization'') ==
=== Hasil kali dari lebih dari dua faktor ===
 
Kaidah darab dapat dirampatkandiperumum ke hasil kali yang memiliki lebih dari dua faktor. Misalkan untuk tiga faktor:
 
:<math>\frac{d(uvw)}{dx} = \frac{du}{dx}vw + u\frac{dv}{dx}w + uv\frac{dw}{dx}.</math>