Deret Fourier: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Jiaminglimjm (bicara | kontrib)
→‎Contoh: Perbaikan kesalahan ketik
Tag: Suntingan perangkat seluler Suntingan aplikasi seluler Suntingan aplikasi Android
Nyilvoskt (bicara | kontrib)
Tidak ada ringkasan suntingan
Tag: Suntingan perangkat seluler Suntingan peramban seluler Suntingan seluler lanjutan pranala ke halaman disambiguasi
Baris 1:
{{Transformasi Fourier transforms}}
Dalam [[matematika]], '''Deret Fourier''' ({{IPAc-en|ˈ|f|ʊr|i|eɪ|,_|-|i|ər}}<ref>{{Dictionary.com|Fourier}}</ref>) merupakan bentuk penguraian [[fungsi periodik]] menjadiberupa jumlahan[[deret fungsi-fungsi(matematika)|penjumlahan]] berosilasi,nilai yaitugelombang fungsi sinus[[sin]] dan kosinus,[[cos]]. ataupun[[Frekuensi]] eksponensialdari kompleks.setiap Studigelombang deretdalam Fourieroperasi penjumlahan (atau yang dikenal sebagai [[harmonisa]]) merupakan cabang[[kelipatan (matematika)|kelipatan]] interger terhadap [[frekuensi fundamental]] dari fungsi periodik. Setiap [[fase (gelombang)|fase]] harmonisa dapat ditentukan dengan [[analisis Fourierharmonisa]]. Deret Fourier diperkenalkanmemiliki kemungkinan untuk memuat harmonisa dengan olehjumlah [[Josephpenjumlahan Fouriertak terhingga|tak terhingga]]. (1768-1830)Hasil untukpenjumlahan memecahkanbagian masalahharmonisa dari deretan tersebut tidak selalu menghasilkan nilai pendekatan terhadap fungsi tersebut. Sebagai contoh, menggunakan beberapa harmonisa awal dari deret Fourier terhadap [[persamaangelombang panaspersegi]] diakan menghasilkan nilai pendekatan dari lempenggelombang logampersegi.
 
<gallery widths="256" heights="256">
Persamaan panas merupakan [[persamaan diferensial parsial]]. Sebelum Fourier, pemecahan persamaan panas ini tidak diketahui secara umum, meskipun solusi khusus diketahui bila sumber panas berperilaku dalam cara sederhana, terutama bila sumber panas merupakan gelombang [[sinus]] atau [[kosinus]]. Solusi sederhana ini saat ini kadang-kadang disebut sebagai solusi eigen. Gagasan Fourier adalah memodelkan sumber panas ini sebagai superposisi (atau kombinasi [[linear]]) gelombang sinus dan kosinus sederhana, dan menuliskan pemecahannya sebagai superposisi solusi eigen terkait. Superposisi kombinasi linear ini disebut sebagai deret Fourier.
File:SquareWaveFourierArrows,rotated,nocaption 20fps.gif|Nilai yang dihasilkan oleh penjumlahan enam titik (dilambangkan oleh titik merah) yang berbeda (dilambangkan oleh anak panah) dari deret Fourier akan menghasilkan sebuah nilai yang mendekati nilai dari gelombang persegi (dilambangkan oleh titik biru). Poros dari setiap anak panah terdapat pada jumlah dari seluruh nilai anak panah di kirinya.
File:Fourier Series.svg|Empat penjumlahan parsial pertama dari deret Fourier terhadap [[gelombang persegi]]. Semakin banyak harmonisa ditambahkan, penjumlahan parsial akan mendekati (semakin terlihat seperti) bentuk gelombang persegi.
 
File:Fourier series and transform.gif|Fungsi <math>s_6(x)</math> (ditandai dengan warna merah) merupakan jumlah deret Fourier dari 6 harmonisa gelombang sin (warna biru). Fungsi tersebut bertranformasi menjadi domain representasi frekuensi <math>S(f)</math> dengan nilai sebagai jumlah dari enam gelombang sin.
Meskipun motivasi awal adalah untuk memecahkan persamaan panas, kemudian terlihat jelas bahwa teknik serupa dapat diterapkan untuk sejumlah besar permasalahan [[fisika]] dan matematika. Deret Fourier saat ini memiliki banyak penerapan di bidang [[teknik elektro]], analisis [[vibrasi]], [[akustika]], [[optika]], [[pengolahan citra]], [[mekanika kuantum]], dan lain-lain.
</gallery>
 
Hampir semua{{efn-ua|kecuali untuk fungsi [[Patologis (matematika)|patologikal]] yang tidak termasuk kedalam [[kondisi Dirichlet]]}} fungsi periodik dapat diuraikan menjadi deret Fourier yang dapat [[Konvergensi deret Fourier|berkonvergensi]].{{efn-ua|Konvergensi hanya dapat dilakukan ketika fungsi tersebut [[fungsi berkelanjutan|berkelanjutan]]. [[Klasifikasi tidak berkelanjutan#Lompatan tidak berkelanjutan|Lompatan tak berkelanjutan]] akan menghasilkan sebuah [[fenomena Gibbs]]. Deret tak terhingga akan terjadi [[Konvergensi titik tertentu|dikonvergensi hampir di semua titik]] kecuali titik-titik yang tidak memiliki keberlanjutan fungsi.}} Proses [[konvergensi deret Fourier]] berarti bahwa makin banyak harmonisa dari deret tersebut dijumlahkan, maka hasil dari operasi penjumlahan akan menghasilkan [[aproksiman (matematika)|nilai pendekatan]] dari fungsi tersebut, dan akan memiliki nilai yang setara dengan fungsi tersebut ketika banyak dari harmonisanya [[tak terhingga potensial|tak terhingga]].
 
Deret Fourier hanya dapat menguraikan fungsi periodikal. Akan tetapi, fungsi non periodik dapat juga diuraikan menggunakan ekstensi dari deret Fourier yang dikenal sebagai [[transformasi Fourier]], operasi tersebut akan menguraikan fungsi non-periodik dengan periode tak terhingga. Kemudian, [[transformasi integral|transformasi]] tersebut akan menghasilkan uraian [[domain frekuensi]] dari fungsi non-periodik dan fungsi periodik, hal tersebut akan memungkinkan bentuk gelombang untuk dikonversi diantara representasi [[domain waktu]] dan representasi domain frekuensinya.
 
Sejak zaman [[Joseph Fourier|Fourier]], banyak operasi nilai pendekatan berbeda untuk mendefinisikan dan memahami konsep deret Fourier telah ditemukan, semua dari operasi tersebut memiliki konsistensi terhadap operasi lainnua, tetapi masing-masing menekankan aspek topik yang berbeda. Beberapa pendekatan yang lebih kuat dan elegan didasarkan pada ide-ide dan alat-alat matematika yang tidak tersedia pada masa Fourier. Fourier pada awalnya mendefinisikan deret Fourier untuk fungsi bernilai [[Bilangan rill|rill]] dari argumen rill, dan menggunakan [[Sinus dan kosinus|fungsi sinus dan kosinus]] sebagai sebuah [[basis (aljabar linier)|kumpulan basis]] untuk operasi dekomposisi. Banyak [[Daftar transformasi deret Fourier|metode transformasi Fourier]] telah didefinisikan, memperluas gagasan awal ke banyak pengaplikasian dan melahirkan sebuah cabang [[cangkupan matematika|matematika]] baru yang dikenal sebagai [[analisis Fourier]] .
 
==Definisi==