Sifat komutatif: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Tag: VisualEditor pranala ke halaman disambiguasi |
Dedhert.Jr (bicara | kontrib) terj. perlu diperiksa. Contoh kehidupan sehari-hari tidak perlu ditulis, karena malah jadi terkesan aneh dan menjadi tidak nyaman saat membaca. |
||
Baris 1:
{{Periksa terjemahan|en|Commutative property}}[[Berkas:Commutativity of binary operations (without question mark).svg|thumb|Sebuah operasi <math>\circ</math> adalah komutatif ''[[jika dan hanya jika]]'' <math>x\circ y = y \circ x</math> untuk setiap <math>x</math> dan <math>y</math>. Gambar ini mengilustrasikan sifat ini dengan konsep dari sebuah operasi sebagai suatu "mesin kalkulasi". Hasil dari <math>x\circ y</math> atau <math>y \circ x</math> tidak dipengaruhi oleh urutan dari argumen <math>x</math> dan <math>y</math> – hasil akhirnya sama.]]
Dalam [[matematika]], suatu [[operasi biner]] memiliki '''sifat komutatif''' jika mengubah urutan [[operan]] tidak mengubah hasilnya. Ini adalah sifat [[fundamental]] dari banyak operasi biner, dan banyak [[pembuktian matematika]] bergantung pada sifat ini. Sifat ini paling dikenal sebagai nama sifat yang mengatakan {{nowrap|1="3 + 4 = 4 + 3"}} atau {{nowrap|1="2 × 5 = 5 × 2"}}. Sifat ini juga dapat digunakan dalam situasi yang lebih rumit. Nama ini diperlukan karena ada operasi, seperti [[pembagian]] dan [[pengurangan]], yang tidak memilikinya (misalnya, {{nowrap|"3 − 5 ≠ 5 − 3"}}); operasi semacam itu tidak bersifat komutatif, dan demikian disebut sebagai ''operasi nonkomutatif''. Gagasan bahwa operasi sederhana, seperti [[perkalian]] dan [[penjumlahan]] bilangan, bersifat komutatif telah diasumsikan secara implisit selama bertahun-tahun. Dengan demikian, properti ini tidak dinamai sampai abad ke-19, ketika matematika mulai menjadi formal.<ref name="ReferenceA">Cabillón and Miller, ''Commutative and Distributive''</ref><ref name=":0">{{cite book|title=Mathematics in Victorian Britain|editor1-first=Raymond|editor1-last=Flood|editor2-first=Adrian|editor2-last=Rice|editor3-first=Robin|editor3-last=Wilson|editor3-link=Robin Wilson (mathematician)|publisher=[[Oxford University Press]]|year=2011|url=https://books.google.com/books?id=YruifIx88AQC&pg=PA4|page=4}}</ref> Sifat yang terkait ada untuk [[relasi biner]]; suatu relasi biner dikatakan [[Relasi simetris|simetris]] jika relasi berlaku terlepas dari urutan operannya; misalnya, [[kesamaan]] bersifat simetris karena dua objek matematika yang sama adalah sama terlepas dari urutannya.<ref>{{MathWorld|id=SymmetricRelation|title=Symmetric Relation}}</ref>
Baris 23:
== Contoh ==
=== Operasi komutatif
[[Berkas:Vector Addition.svg|thumb|Penambahan vektor bersifat komutatif, karena <math>\vec a+\vec b=\vec b+ \vec a</math>.]]
Dua contoh operasi biner komutatif yang terkenal:<ref name="Krowne, p.1"/>
Baris 44 ⟶ 39:
* Contoh lebih lanjut dari operasi biner komutatif termasuk penambahan dan perkalian [[bilangan kompleks]], penjumlahan dan [[perkalian skalar]] dari [[ruang vektor|vektor]], dan [[persimpangan (teori himpunan)|persimpangan]] dan [[persatuan (teori himpunan)|persatuan]] dari [[himpunan (matematika)|himpunan]].
=== Operasi nonkomutatif
Beberapa operasi biner nonkomutatif:<ref>Yark, p.1.</ref>
|