Notasi O besar: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
pengertian notasi ini butuh dikembangkan dan diubah
Tag: halaman dengan galat kutipan VisualEditor
Dedhert.Jr (bicara | kontrib)
ref
Baris 1:
[[File:Big-O-notation.png|300px|thumb|Contoh notasi O besar: <math>{\color{red}f(x)} \in O{\color{blue}(g(x))}</math> karena ada <math>M>0</math> (yakni, <math>M=1</math>) dan <math>x_0</math> (yakni, <math>x_0=5</math>) sehingga <math>{\color{red}f(x)}\leq {\color{blue}Mg(x)}</math> dengan <math>x\geq x_0</math>.]]'''Notasi ''O'' besar''', atau '''notasi''' '''Bachmann–Landau''' atau '''notasi asimtotik''' merupakan notasi matematika yang menjelaskan [[Analisis asimtotik|perilaku pada batas]] suatu [[Fungsi (matematika)|fungsi]] ketika [[Argumen fungsi|argumen]] cenderung menuju ke nilai yang khusus atau takhingga. Notasi O besar merupakan anggota dari keluarga notasi yang ditemukan oleh [[Paul Gustav Heinrich Bachmann|Paul Bachmann]],<ref>[[Paul name=Bachmann|Bachmann, Paul]] (1894), [https://archive.org/stream/dieanalytischeza00bachuoft#page/402/mode/2up ''Analytische Zahlentheorie''] [''Teori Bilangan Analitik''] (dalam bahasa Jerman). Vol. 2. Leipzig: Teubner.</ref> [[Edmund Landau]],<ref>[[Edmund name=Landau|Landau, Edmund]] (1909). ''[[iarchive:handbuchderlehre01landuoft|Handbuch der Lehre von der Verteilung der Primzahlen]]'' [''Pedoman tentang teori dari distribusi bilangan prima''] (dalam bahasa Jerman). Leipzig: B. G. Teubner. hlm. 883.</ref> dan matematikawan lain. Notasi O yang dipilih Bachmann mengartikan ''[[:wikt:Ordnung#German|Ordnung]]'', yang berarti [[orde aproksimasi]].
 
Notasi O besar dikaitkan dengan notasi yang berbeda. Ada yang menggunakan {{math|''o'', Ω, ''ω''}}, dan {{math|Θ}}, yang dipakai untuk menjelaskan jenis batas lain pada laju pertumbuhan asimtotik.