Poligon: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib)
segi-n
Dedhert.Jr (bicara | kontrib)
Baris 84:
Setiap poligon dengan keliling <math>p</math> dan luas <math>A</math>'','' berlaku [[pertidaksamaan isoperimetrik]] <math>p^2 > 4\pi A</math>.<ref>[http://forumgeom.fau.edu/FG2002volume2/FG200215.pdf Dergiades, Nikolaos, "An elementary proof of the isoperimetric inequality", ''Forum Mathematicorum'' 2, 2002, 129–130.]</ref>
 
Untuk dua poligon sederhana yang luasnya sama, [[teorema Bolyai–Gerwien]] mengatakan bahwa poligon pertama dapat dipotong menjadi potongan poligonal yang dapat disatukan kembali untuk membentuk poligon kedua.<!--Panjang sisi poligon secara umum tidak menentukan luasnya.<ref>Robbins, "Polygons inscribed in a circle," ''American Mathematical Monthly'' 102, June–July 1995.</ref> Akan tetapi, jika poligon berupa siklik, maka sisinya yang menentukan luas.<ref>{{cite journal|last=Pak|first=Igor|authorlink=Igor Pak|doi=10.1016/j.aam.2004.08.006|issue=4|journal=[[Advances in Applied Mathematics]]|mr=2128993|pages=690–696|title=Area poligon siklik: kemajuan terbaru pada dugaan Robbins|volume=34|year=2005|arxiv=math/0408104}}</ref> Jadi, luas terbesar di antara semua <math>n</math>-gon jika panjang sisinya diketahui adalah poligon siklik, dan luas terbesar di antara semua <math>n</math>-gon jika kelilingnya diketahui adalah poligon beraturan (and therefore cyclic).<ref>Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in ''Mathematical Plums'' (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.</ref>-->
Untuk dua poligon sederhana yang luasnya sama, [[teorema Bolyai–Gerwien]] mengatakan bahwa poligon pertama dapat dipotong menjadi potongan poligonal yang dapat disatukan kembali untuk membentuk poligon kedua.
 
<!--Panjang sisi poligon secara umum tidak menentukan luasnya.<ref>Robbins, "Polygons inscribed in a circle," ''American Mathematical Monthly'' 102, June–July 1995.</ref> Akan tetapi, jika poligon berupa siklik, maka sisinya yang menentukan luas.<ref>{{cite journal|last=Pak|first=Igor|authorlink=Igor Pak|doi=10.1016/j.aam.2004.08.006|issue=4|journal=[[Advances in Applied Mathematics]]|mr=2128993|pages=690–696|title=Area poligon siklik: kemajuan terbaru pada dugaan Robbins|volume=34|year=2005|arxiv=math/0408104}}</ref> Jadi, luas terbesar di antara semua <math>n</math>-gon jika panjang sisinya diketahui adalah poligon siklik, dan luas terbesar di antara semua <math>n</math>-gon jika kelilingnya diketahui adalah poligon beraturan (and therefore cyclic).<ref>Chakerian, G. D. "A Distorted View of Geometry." Ch. 7 in ''Mathematical Plums'' (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.</ref>-->
 
==== Poligon beraturan ====
Terdapat banyak rumus khusus yang dipakai untuk luas [[poligon beraturan]]. Sebagai contoh, luas poligon beraturan dirumuskan dengan menggunakan jari-jari <math>r</math> (atau lebih tepatnya, [[apotema]]) dari [[lingkaran dalam]] dan keliling poligon<math display="block">A = \frac{1}{2} \cdot p \cdot r.</math>Luas segi-<math>n</math> beraturan dengan jari-jari <math>R</math> dari [[lingkaran luar]] dapat dinyatakan dengan menggunakan trigonometri:<ref>[https://www.mathopenref.com/polygonregularareaderive.html Area of a regular polygon - derivation] from Math Open Reference.</ref><ref>A regular polygon with an infinite number of sides is a circle: <math>\lim_{n \to +\infty} R^2 \cdot \frac{n}{2} \cdot \sin \frac{2\pi}{n} = \pi \cdot R^2</math>.</ref><math display="block">A = R^2 \cdot \frac{n}{2} \cdot \sin \frac{2\pi}{n} = R^2 \cdot n \cdot \sin \frac{\pi}{n} \cdot \cos \frac{\pi}{n}</math>Luas segi-<math>n</math> beraturan di dalam lingkaran berjari-jari satuan, dengan sisi <math>s</math> dan sudut dalam <math>\alpha</math>, juga dapat dinyatakan dengan menggunakan trigonometri:<math display="block">A = \frac{ns^{2}}{4}\cot \frac{\pi}{n} = \frac{ns^{2}}{4}\cot\frac{\alpha}{n-2} = n \cdot \sin \frac{\alpha}{n-2} \cdot \cos \frac{\alpha}{n-2}.</math><!--
Banyak rumus khusus yang diterapkan pada bidang [[poligon beraturan]].
 
Luas poligon beraturan diberikan dalam radius ''r'' dari [[lingkaran tertulis]] dan kelilingnya ''p'' oleh
:<math>L = \tfrac{1}{2} \cdot p \cdot r.</math>
Jari-jari ini juga disebut [[apotema]] dan sering direpresentasikan sebagai ''a''.
 
Luas beraturan ''n''-gon dengan sisi yang tertulis dalam lingkaran satuan tersebut
:<math>L = \frac{ns}{4} \sqrt{4-s^{2}}.</math>
 
Luas sebuah ''n''-gon dalam hal jari-jari ''R'' dari [[lingkaran berbatas]] dan kelilingnya ''p'' diberikan oleh
:<math>L = \frac {R}{2} \cdot p \cdot \sqrt{1- \tfrac{p^{2}}{4n^{2}R^{2}}}.</math>
 
Luas sebuah ''n'' beraturan-gon tertulis dalam lingkaran jari-jari satuan, dengan sisi ''s'' dan sudut interior <math>\alpha,</math> juga dapat dinyatakan secara trigonometri sebagai
:<math>L = \frac{ns^{2}}{4}\cot \frac{\pi}{n} = \frac{ns^{2}}{4}\cot\frac{\alpha}{n-2}=n \cdot \sin \frac{\pi}{n} \cdot \cos \frac{\pi}{n} = n \cdot \sin \frac{\alpha}{n-2} \cdot \cos \frac{\alpha}{n-2}.</math>
<!--
<!--====Self-intersecting====
The area of a [[Complex polygon|self-intersecting polygon]] can be defined in two different ways, giving different answers:
Baris 109 ⟶ 93:
* Considering the enclosed regions as point sets, we can find the area of the enclosed point set. This corresponds to the area of the plane covered by the polygon or to the area of one or more simple polygons having the same outline as the self-intersecting one. In the case of the cross-quadrilateral, it is treated as two simple triangles.{{citation needed|date=February 2019}}-->
 
=== CentroidPusat massa ===
MenggunakanDengan menggunakan konvensi yang sama untuk koordinat puncaktitik pojok seperti padadi bagian sebelumnya, koordinat dari pusat massa dari poligon sederhana yangpadat soliddirumuskan adalahsebagai
 
:<math>C_x = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (x_i + x_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i), </math>
:<math display="block">C_x = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (x_i + x_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i), </math><math display="block">C_y = \frac{1}{6 A} \sum_{i = 0}^{n - 1} (y_i + y_{i + 1}) (x_i y_{i + 1} - x_{i + 1} y_i).</math>
 
DalamPada kedua rumus initersebut, nilai areabertanda yangdari ditandatanganiluas <math>LA</math> harus digunakan.
 
 
<!--For [[triangle]]s ({{math|1=''n'' = 3}}), the centroids of the vertices and of the solid shape are the same, but, in general, this is not true for {{math|''n'' > 3}}. The [[centroid]] of the vertex set of a polygon with {{mvar|n}} vertices has the coordinates
Baris 120 ⟶ 106:
 
== Generalisasi ==
IdeGagasan penemuandari poligon telahdiperumum digeneralisasikan denganmelalui berbagai cara. BeberapaAda beberapa perumuman dari poligon yang lebih penting, di termasukantaranya:
* [[Poligon bola]] adalah rangkaianpoligon yang mempunyai sirkuit dari busur lingkaran besar (yakni, sisi) dan titik sudutpojok pada permukaan bola. Hal ini memungkinkan [[digon]], poligon yang hanya memiliki dua sisi dan dua suduttitik pojok, yang tidak mungkin dilakukan pada bidang datar. Poligon bola memainkan peran penting dalam [[kartografi]] (pembuatan peta) dan dalam [[konstruksi Wythoff]] dari [[polihedra seragam]].
* [[Poligon miringpencong]] tidak terletak padadi bidang datar, tetapimelainkan di garis zigzag dalam dimensi tiga dimensiatau lebih. [[Poligon Petrie]] dari politop biasaberaturan adalah contoh yang terkenal.
* [[Apeirogon]] adalah urutansebuah sisipoligon danyang sudutmempunyai barisan tak hingga, yangdari sisi dan sudut. Barisan tersebut tidak tertutup tetapi tidak memilikipunyai ujungtitik karenaakhir, memanjangsebab barisan tersebut secara tak tanpalangsung batasmemperluas dike keduadua arah.
* [[Apeirogon miringpencong]] adalah barisansebuah sisipoligon danyang sudutmempunyai barisan tak hingga dari sisi dan sudut yang tidak terletak padadi sebuah bidang datar.
* [[Politop kompleks|poligonPoligon kompleks]] adalah sebuah [[konfigurasi (politop)|konfigurasi]] analogyang denganmirip seperti poligon biasa,. hanyaYang adamembedakannya dalamadalah poligon ini berada di [[bidang kompleks]] dari dua dimensi [[bilangan real]] dan dua dimensi [[bilangan riilimajiner]].
* [[Politop abstrak|Poligon abstrak]] adalah bagian dari aljabar [[himpunan berurutanterurut sebagianparsial]] aljabar yang mewakili berbagai elemen (seperti sisi, simpultitik pojok, dlldsb.) Danserta konektivitasnyaketerhubungannya. Sebuah poligon geometrisgeometri nyatareal dikatakan sebagai '''Deka-5-top'realisasi'' dari poligon abstrak. Bergantung pada pemetaan, semua generalisasi yang dijelaskan di sini dapat direalisasikaniring.
* [[PolihedraPolihedron]] adalah benda padat tiga dimensi tiga yang dibatasi oleh permukaanmuka poligonal datar, dianalogikanmirip denganseperti poligon dalam dimensi dua dimensi.yang dibatasi oleh sisi, Bentuk yang sesuaikorespondensi dalam dimensi empat atau lebih dimensidisebut disebutsebagai [[politop]].<ref>Coxeter (3rd Ed 1973)</ref> (Dalam konvensi lain, kata '' polyhedron '' dan ''politop'' digunakan dalam dimensi apa pun, dengan perbedaan antara keduanya bahwa sebuah politop harus dibatasi.<ref>[[Günter Ziegler]] (1995). "Kuliah tentang Politop". Springer ''Teks Pascasarjana dalam Matematika'', {{isbn|978-0-387-94365-7}}. p. 4.</ref>)
 
== Nama dan jenis ==