Analisis regresi: Perbedaan antara revisi

Konten dihapus Konten ditambahkan
Kembangraps (bicara | kontrib)
k buang link promosi ke situs
Baris 1:
{{dablink|Untuk Teknik hipnotis, lihat [[Regresi kehidupan masa lalu|'''Regresi''']]}}
 
'''Regresi''' dalam [[statistika]] adalah salah satu metode untuk menentukan tingkathubungan pengaruhsebab-akibat suatuantara satu [[variabel]] terhadapdan variabel(-variabel) yang lain. Variabel yang pertama"penyebab" disebut dengan bermacam-macam istilah: ''variabel penjelas'', ''variabel eksplanatorik'', ''variabel independen'', atau secara bebas, ''variabel X'' (karena seringkali digambarkan dalam grafik sebagai [[absis]], atau sumbu X). Variabel yangterkena keduaakibat adalahdikenal sebagai ''variabel yang dipengaruhi'', ''variabel dependen'', ''variabel terikat'', atau ''variabel Y''. Kedua variabel ini dapat merupakan [[variabel acak]] (random), namun variabel yang dipengaruhi harus selalu variabel acak.
 
Analisis regresi adalah salah satu analisis yang paling populer dan luas pemakaiannya. Hampir semua bidang ilmu yang memerlukan analisis sebab-akibat boleh dipastikan mengenal analisis ini.
 
Istilah regresi diperkenalkan oleh Sir [[Francis Galton]], yang menemukan bahwa meskipun ada kecenderungan bagi orang tua yang tinggi mempunyai anak yang tinggi dan orang tua yang pendek mempunyai anak yang pendek, tetapi distribusi tinggi populasi tidak berubah secarsecara menyolokmencolok dari generasi ke generasi. Penjelasannya adalah bahwa kecenderungan bagi rata-rata tinggi anak dengan orang tua yang mempunyai tinggi tertentu untuk bergerak atau mundur (regress) ke arah tinggi rata-rata seluruh populasi. Hukum regresi semesta (''law of universal regression''), yang bersifat biologis ini diperkuat oleh [[Karl Pearson]]. Ia menemukan bahwa rata-rata tinggi anak laki-laki kelompok ayah yang tinggi kurang daripada tinggi ayah mereka dan rata-rata tinggi anak laki-laki kelompok ayah yang pendek lebih tinggi dari pada tinggi ayah mereka.
Namun demikian, sesuai dengan perkembangan metodologi dan penerapannya, definisi regresi tersebut pada saat ini telah berbeda jauh dari pengertian awal tersebut. Secara definisi, pengertian analisis regresi adalah berkenaan dengan studi ketergantungan dari satu variabel dependent (selanjutnya disebut variabel terikat) pada satu atau lebih variabel independent (selanjutnya disebut variabel bebas) dengan tujuan untuk memperkirakan dan atau meramalkan nilai rata-rata dari variabel terikat apabila variabel bebasnya sudah diketahui
Regresi berkaitan dengan ketergantungan statistik (statistical dependent) bukan ketergantungan fungsional secara deterministik. Ketergantungan statistik berkaitan dengan variabel yang random/stokastik (random/ stochastic variables), yaitu variabel yang mempunyai distribusi probabilita (probability distribution). Di pihak lain, ketergantungan fungsional atau deterministik, variabelnya tidak random (non-random) atau stokhastik.
Contoh ketergantungan bersifat statistik:
Kita tidak akan mungkin meramalkan secara akurat hasil panen meskipun kita sudah mengetahui dan menganalisis sebanyak mungkin variabel yang mempengaruhi hasil panen. Ketidak-akuratan tersebut bisa bersumber dari kesalahan dalam pengukuran variabel-variabel ini, ataupun disebabkan adanya faktor lain yang mempengaruhi hasil panen yang sulit untuk diketahui atau diukur.
Contoh ketergantungan bersifat fungsional atau deterministik
Hukum gravitasi Newton: F = k(m1m2/r2), yang menyatakan setiap partikel dalam alam semesta menarik setiap partikel lain dengan suatu gaya (F) yang langsung yang sebanding dengan hasil kali masanya (m1m2) dan berbanding terbalik dengan kuadrat jarak (r2) antara partikel-partikel tadi. Artinya, jika diketahui nilai k (konstanta perbandingan), m1, m2 dan r, maka secara akurat (pasti) dapat ditentukan nilai F.
 
== Model dan Estimasi Regresi ==
[http://junaidichaniago.blogspot.com/2009/04/regresi-linear-sederhana-seri-1-model.html Regresi Linear Sederhana]
 
[http://junaidichaniago.blogspot.com/2009/04/regresi-linear-berganda-seri-2-model.html Regresi Linear Berganda]
 
[http://junaidichaniago.blogspot.com/2009/04/regresi-dengan-variabel-dummy-seri-3.html Regresi dengan Variabel Dummy]
[http://junaidichaniago.blogspot.com/2009/04/bentuk-fungsional-regresi-linear-seri.html Bentuk Fungsional Regresi Linear]
 
[http://junaidichaniago.blogspot.com/2009/04/model-pilihan-kualitatif-seri-5-model.html Model Pilihan Kualitatif]
 
[http://junaidichaniago.blogspot.com/2009/04/regresi-binary-logit-seri-6-model.html Regresi Binary Logit]
 
Sesuai dengan perkembangan metodologi dan penerapannya, definisi regresi pada saat ini telah berbeda jauh dari pengertian awal tersebut. Umpamanya, dengan regresi pendugaan-pendugaan terhadap sesuatu performa dapat dilakukan, selama variabel-variabel penentu dapat ditentukan sebelumnya.
 
Regresi berkaitan dengan ketergantungan stokastik, yang berarti memiliki peluang untuk meleset dari prediksi. Setiap pengambilan dugaan yang menggunakan regresi harus didasari dengan kesadaran bahwa hasil perkiraan tidak akan 100% sama dengan kenyataan (ketergantungan deterministik).
 
{{statistik-stub}}
[[Kategori:Statistika]]