Pengguna:Dedhert.Jr/Uji halaman 01/18: Perbedaan antara revisi
Konten dihapus Konten ditambahkan
Dedhert.Jr (bicara | kontrib) |
Dedhert.Jr (bicara | kontrib) Tidak ada ringkasan suntingan |
||
Baris 1:
[[Berkas:Möbius_strip.jpg|ka|jmpl|Sebuah strip Möbius yang terbuat dari kertas dan plester.]]
Dalam [[matematika]], '''strip Möbius''' atau '''pita''' '''Möbius''' adalah
Karena berupakan [[ruang topologis]] yang abstrak, strip Möbius dapat dibenamkan menjadi [[ruang Euklides]] berdimensi tiga dalam berbagai cara: sebuah pita yang diputar setengah dengan arah jarum jam berbeda dengan yang diputar setengah dengan arah yang berlawanan, dan strip Möbius dapat dibenamkan dengan jumlah putaran ganjil yang lebih besar dari satu, atau dengan garis tengah yang [[Buhul (matematika)|dibuhul]]. Secara topologis dikatakan [[Isotopi sekitar|ekuivalen]] jika setiap dua pembenaman dengan buhul dalam garis tengah dan jumlah arah putaran yang sama. Semua pembenaman pada strip Möbius hanya memiliki satu sisi, namun pita dapat mempunyai dua sisi bila dibenamkan dalam ruang lain. Pita ini hanya mempunyai sebuah [[Batas (topologi)|kurva batas]] yang tunggal.
Baris 22:
== Sifat-sifat ==
[[Berkas:Fiddler_crab_mobius_strip.gif|kiri|jmpl|Sebuah objek dua dimensi bergerak melintang sekali disekitar strip Möbius dan kembali ke posisi semula dalam bentuk yang tercermin.|309x309px]]
Strip Möbius mempunyai beberapa sifat yang aneh. Strip Möbius merupakan [[Keterarahkan|permukaan takterarahkan]], yang berarti bahwa jika sebuah benda dimensi dua asimetris yang meluncur sekali di sekitar pita tersebut, maka benda tersebut kembali ke posisi semula dengan bentuk yang tercermin. Khususnya, sebuah kurva dengan panah yang mengarah ke jarum jam (↻) akan kembali ketika sebuah panah yang mengarah ke arah jarum jam yang berlawanan (↺). Hal ini menyiratkan bahwa dalam strip Möbius mustahil untuk selalu menentukan apakah benda mengarah ke jarum jam atau sebaliknya. Strip Möbius merupakan permukaan takterarahkan yang sederhana, yang mengatakan bahwa setiap permukaan lain adalah takterarahkan jika dan hanya jika permukaan tersebut mempunyai strip Möbius sebagai {{nowrap|subhimpunan.{{r|chirality}}}}
A path along the edge of a Möbius strip, traced until it returns to its starting point on the edge, includes all boundary points of the Möbius strip in a single continuous curve. For a Möbius strip formed by gluing and twisting a rectangle, it has twice the length of the centerline of the strip. In this sense, the Möbius strip is different from an untwisted ring and like a circular disk in having only one {{nowrap|boundary.{{sfnp|Pickover|2005|pp=8–9}}}} A Möbius strip in Euclidean space cannot be moved or stretched into its mirror image; it is a [[Chirality (mathematics)|chiral]] object with right- or {{nowrap|left-handedness.{{sfnp|Pickover|2005|p=52}}}} Möbius strips with odd numbers of half-twists greater than one, or that are knotted before gluing, are distinct as embedded subsets of three-dimensional space, even though they are all equivalent as two-dimensional topological {{nowrap|surfaces.{{sfnp|Pickover|2005|p=12}}}} More precisely, two Möbius strips are equivalently embedded in three-dimensional space when their centerlines determine the same knot and they have the same number of twists as each {{nowrap|other.{{r|kyle}}}} With an even number of twists, however, one obtains a different topological surface, called the {{nowrap|[[Annulus (mathematics)|annulus]].{{sfnp|Pickover|2005|p=11}}}}
Baris 50:
=== Menyapu sebuah ruas garis ===
[[Berkas:Mobius strip.gif|jmpl|200x200px|Sebuah strip Möbius disapu dengan memutar ruas garis dalam sebuah bidang putaran.]]
[[Berkas:Plucker's conoid (n=2).gif|jmpl|[[Konoid Plücker]] disapu dengan gerakan
Cara agar membenamkan strip Möbius dalam ruang Euklides berdimensi tiga adalah dengan menyapu melalui sebuah ruas garis yang memutar di sebuah bidang, yang berputar di sekitar salah satu {{nowrap|garisnya.{{r|maschke}}}} Dalam menyapu
\begin{align}
x(u,v)&= \left(1+\frac{v}{2} \cos \frac{u}{2}\right)\cos u\\
y(u,v)&= \left(1+\frac{v}{2} \cos\frac{u}{2}\right)\sin u\\
z(u,v)&= \frac{v}{2}\sin \frac{u}{2}\\
\end{align}</math>untuk <math>0 \le u< 2\pi</math> dan {{nowrap|<math>-1 \le v\le 1</math>,}}
A line or line segment swept in a different motion, rotating in a horizontal plane around the origin as it moves up and down, forms [[Plücker's conoid]] or cylindroid, an algebraic [[ruled surface]] in the form of a self-crossing Möbius {{nowrap|strip.{{r|francis}}}} It has applications in the design of {{nowrap|[[gear]]s.{{r|dooner-seirig}}}}
|